2022 KNS Spring Meeting (2022.05.19 Jeju)

KAERI divertor plasma simulator for studying material damage by D ions & divertor cooling technique

K.-B. Chai¹ D.-H. Kwon¹ and S. Son²

¹ Korea Atomic Energy Research Institute

² Korea Institute of Fusion Energy

Acknowledgement: Changmin Shin @ KAIST, Hoongyo Oh @ Postech

Contents

- I. Introduction to KAERI divertor heat & particle flux simulator
 - 1) What is divertor?
 - 2) KAERI Divertor simulator using AF-MPD thruster
 - 3) Plasma beam characteristics of KAERI divertor simulator
- II. Study on divertor engineering using KAERI experiment
 - 1) Tungsten surface damage by D ions
 - 2) Heat load test of Cu hypervapotron + W monoblock
 - 3) Future plan

Divertor

- Divertor: device where open magnetic fields outside LCFS pass through in fusion reactor
- Role: remove helium ashes & impurities formed by fusion reaction & plasma-wall interactions

```
D<sup>+</sup> + T<sup>+</sup> → He<sup>2+</sup> (3.5 MeV) + n (14.1 MeV)
```

- → Acts like a "trash bin"
- \rightarrow High heat and particle fluxes come to divertor target along open magnetic field

ITER divertor cassette

Divertor problem

- ITER & DEMO: expected heat flux 10-20 MWm⁻²; expected particle flux 10²⁴ m⁻²s⁻¹
 - > Need to develop divertor system working in extremely high heat/particle/neutron fluxes
- Issues:
 - > Operation scenario to reduce incoming heat & ptl fluxes (e.g. detached divertor)
 - > Advanced divertor concept such as super-X, snowflake, small-angle slot, etc.
 - > Innovative heat sink design to enhance CHF of divertor (swirl tube, hypervapotron tube, ...)
 - > Divertor materials and bonding technology for extreme divertor condition

KAERI divertor heat & ptl flux simulator

- Plasma source: Applied-Field MagnetoPlasmaDynamic thruster (AF-MPD thruster)
- Two AF-MPD thrusters have been developed and used:
 - > Open type (type 1): used for heat flux test with Ar/Xe gas
 - > Closed type (type 2): used for particle flux test with $H_2/D_2/He$ gas

PPCF 62, 035007 (2020)

Vacuum chamber volume: 2.64 m³ Pumping speed: 10,000 l/s (for Ar gas)

PPCF 63, 125020 (2021)

Principle of AF-MPD thruster

- Plasma is ignited by applying voltage across anode & cathode
- Electrons become magnetized by applied field (ions become weakly magnetized)
- Ions accelerated in the axial direction by magnetized electron-induced E-field (magnetic nozzle effect)
- Ions are additionally accelerated by swirl motion and hall current

Plasma ignition

- Successfully ignited plasmas with Ar, Xe, H₂, D₂, He gases
- Ar, Xe plasmas obtained using type 1 source; H₂, D₂, He plasmas obtained using type 2 source
- Breakdown voltage: 600 V
- Operation pressure: $(0.6 1) \times 10^{-3}$ Torr

Heat flux measurement

- Developed and installed custom-made heat flux sensor
- Heat flux was measured by two different methods
 - > Calorimetry equation: $Q = cm \Delta T$,
 - ► Heat conduction equation: $dQ/dt = \kappa A(\Delta T/\Delta x)$
- Successfully achieved heat flux of 10 MWm⁻² with $I_p = 200$ A at z = 30 cm (area: 2×2 cm²)

* z: distance between plasma source and target

Particle (ion) flux measurement

- Ion flux was measured by Langmuir probe
- Ion flux (Γ_i) was obtained from $\Gamma_i = I_{is}/eA_p$ (A_p : tip area) by measuring ion saturation current (I_{is})
 - > Hydrogen ion flux: 1×10^{23} m⁻²s⁻¹ with $I_p = 180$ A
 - > Helium ion flux : $2 \times 10^{22} \text{ m}^{-2} \text{s}^{-1}$ with $I_p = 105 \text{ A}$

*SEE: secondary electron emission

T_e & n_e measurement

 T_e and n_e of plasma plume were measured using Langmuir probe

• T_e:

- ➢ Ar plasma: 4−5 eV
- ≻ H₂ plasma: ~ 4 eV
- ➤ He plasma: ~ 6 eV
- n_e:
 - ➢ Ar, H₂ plasma: (1−4)×10¹² cm⁻³
 - ➢ He plasma: (1−2)×10¹² cm⁻³

Plasma beam profile

- Spatial beam profile was measured using Langmuir probe array
- Full Width at Half Maximum (FWHM):
 - Open type (type 1): 120 mm
 - Closed type (type 2): 40 mm

Contents

- I. Introduction to KAERI divertor heat & particle flux simulator
 - 1) What is divertor?
 - 2) KAERI Divertor simulator using AF-MPD thruster
 - 3) Plasma beam characteristics of KAERI divertor simulator
- II. Study on divertor engineering using KAERI experiment
 - 1) Tungsten surface damage by D ions
 - 2) Heat load test of Cu hypervapotron + W monoblock
 - 3) Future plan

Motivation of tungsten damage Exp.

- Tungsten (W) will be used as armor material for ITER/DEMO divertor
- Issues relevant to divertor armor materials:
 - Surface damage by H, D, T (blister), & He (nanostructure, fuzz)
 - Effect of surface damage on material properties
 - Lifetime of armor materials
- Before addressing above,
 - Want to check our facility is suitable for studying divertor materials (by building DB for surface damage)

NME **16**, 1(2018) NF **58**, 066014(2018)

Experimental setup

- Target: 5×8 mm² W sample
- Ion energy: 30-100 eV
- In-situ monitor ion flux & fluence
- IR camera: 2D temp. monitor
- Pyrometer: W surface temp. monitor
- T/C: W bulk temp. monitor

Preliminary results

• Dependence on W bulk temperature (T_s)

parameters	value
lon energy	100 eV
Ion total fluence	2.5×10 ²⁵ m ⁻²
Maker	ALMT

→ Size and number density of blisters depend on W temperature

Dependence on ion incident energy (E_i)

parameters	value
W temp.	100-200 °C
Ion total fluence	3.5×10 ²⁵ m ⁻²
Maker	AT&M
→ Size of blisters is a 30-100 eV ion incide	similar betweenkaeri dent energy

Test of Cu HV based W monoblock

- Postech team (Prof. H. Jo's group) developed and optimized Cu hypervapotron (HV)
 - \rightarrow Fin angle (45°)+ micro-structure
- Then, Postech team bonded W monoblock to Cu HV

Figure credit: Postech

Heat load test setup and results

Experimental setup for heat load test

- Cu HV + W monoblock was installed in front of plasmas source
- Heat flux between (1–3.5) MWm⁻² loaded and surface temp. of W measured by pyrometer
- Measured surface temperature > calculated temperature \rightarrow bad thermal contact (bad bonding)

Summary and future plan

- Successfully developed divertor heat- and particle-flux simulator at KAERI
 - Heat flux: up to 10 MWm⁻² (test area: 2×2 cm²)
 - ➢ H/D Particle flux: up to 10²³ m⁻²s⁻¹
- Studied tungsten blister formation and performed heat load test for Cu HV + W monoblock
 KAERI divertor simulator is more suitable for divertor material study than for heat load test
- Future plan:
 - Continue to build DB for tungsten blister formation
 - Study W fuel retention (collaboration with KFE)
 - Upgrade of our facility (higher particle flux and fluence)
 - Target upgrade for user service

Thank you for attention

