

Activation Characteristics for Concrete Shielding Wall of KRR-2 : verification of technology using in-situ measurement

Jihyun Yu*, Byungchae Lee, Seunggi Jeong , Jonghoa Kim , Jangsoo Suh, , Sangbum Hong^b *Sae-An Enertech Corp, ^bKorea Atomic Energy Research Institute E-mail:vdnj5308@sae-tec.com

INTRODUCTION

- Background of the Study
 - Concrete waste accounts for more than 70% of radioactive waste in decommissioning a nuclear facility.
 - Therefore, reducing the amount of concrete waste can ensure the economic feasibility of the decommissioning project.
 - In-situ measurement technique should be developed that can quickly and accurately evaluate the radioactivity distribution of concrete shielding walls without sampling.

- Research Objective
 - Analysis of the radioactivity distribution of concrete shielding walls in KRR-2 using a Peak to Compton (PTC) method.
 - Verifying the reliability of evaluation algorithms through the field application tests of KRR-2.

BACKGROUND

- Characteristics of Activation Concrete by the Depth
 - Case of decommissioning of KRR-2 and Trojan NPP - As the increase in thickness of the concrete, radioactivity is decreased exponentially

- A_o: Specific activity of surface(Bq/g) ς : Effective mass per unit area(g/cm²) β : Relaxation mass per unit area(g/cm²) a : Relaxation depth(cm⁻¹) χ : Depth(cm)
- ρ : Density(g/cm³)

RESULTS

- Calculating the Activation for Concrete
 - It was confirmed that ⁶⁰Co and ¹⁵²Eu, which are representative gamma radionuclides of activation concrete were detected only on the reactor floor of the KRR-2.
 - Excluding the effect of steel : evaluated only ¹⁵²Eu

- Radioactivity by the Concrete Thickness
 - The ratio for total radioactivity
 - SAE-AN : 40.5 %(1 cm), 66.3 %(5 cm), 81.0 %(10 cm) - KAERI : 37.6 %(1 cm), 62.7 %(5 cm), 77.8 %(10 cm)

- Peak to Compton Method
 - Analysis using the characteristics of the change in the counting rate of the peak & Compton area by the depth

• Q_{PTC} = Peak to Compton Counting rate ratio • C_F= Full energy Peak Net Counting rate • C_c = Compton Continuum Net Counting rate

METHODS

✤ Detector

Detector	MFG. Co	Model	Relative Efficiency	Energy Resolution
ISOCS	Canberra	GC-3018	30 % (at 3 inch Nal(TI))	0.18 % (at 1332 keV)

The relative error for the radioactivity distribution by depth was about 3.4 % : highly consistent

- Limitations of Technology Application
 - KRR-2 : removal of the activation for concrete
 - β value : level of residual activity
 - It has been confirmed that there are limitations to the application of this technology in the case of removing the activation of concrete.

CONCLUSIONS

- Verifying the reliability of evaluation algorithms (based on the PTC method) through Field Application Tests of KRR-2.
- In-situ β : Result of the analysis of the relative error with KAERI(core technology) was 5.67 %.

Experimental Method

- In-situ measurements were conducted at many concrete facilities in KRR-2.(general, reactor floor, basement, etc.)
- 3600 s for each measurement point
- Evaluation Method
 - Calculate the Q-value after removing the BKG spectrum from the measured spectrum.
 - Activation of the concrete : derived by substituting Q-values into the evaluation algorithm
 - Validation of New Technology(Qualitative analysis)
 - Comparison of SAE-AN & KAERI analysis results

- As a result of calculating the probability of distribution of radioactivity by depth based on residual radioactivity levels : the two organizations showed a high level of consistency with an error of less than 3.4 %.
- Confirmed that the validity of the PTC method was demonstarted to evaluate the activation of concrete shielding walls.

PROPOSAL

In the future, research on reliability verification should be conducted based on quantitative analysis results by providing a chance for laboratory analysis after sampling.