www.kaeri.re.kr

Practical Application of PSA Model for the Evaluation of DID

• • • •

원자력연구원 리스크평가연구실

임호곤 / 2022.05.

한 국 원 자 력 연 구 원 / 리 Korea Atomic Energy Research Institute / Risk and

리 스 크 평 가 연 구 실 Risk and Reliability Research Division

CONTENTS ····

Introduction

DID 1&2 evaluation

> DID 1&2 and PSA model
 > 초기사건 고장수목에서의 DID 분리
 > DID 1, 2단계 분리방법
 > 예제계산

DID 3 evaluation

> DID 3단계 분해 및 평가
> DID 3단계 세부 분리의 문제
> DID 3단계 분리방법 제안
> 예제계산

Conclusion

Introduction(1)

• 안전성 평가 패러다임 변화

- 원자력 안전성의 평가는 1960대 이후 30여 년간의 결정론적/규정적 평가를 거쳐 1990년대부터 리스크 평가를 이용한 리스크정보의사결정(Risk Informed Decision Making)방식으로 급격하게 변동하고 있음
 - 기존 규정과의 부합
 - 심층방어 철학과의 일관성
 - 적절한 안전여유도의 유지
 - 허용 가능한 수준의 리스크 변화
 - 기 정의된 성능측정 전략의 이행
- 미국, 일본 및 대부분의 유럽이 RIDM방식을 규제에 도입함
- 정성적 평가 요소에 대한 주관성 배제 필요
 - 정성적 안전성 평가 요소는 주관성을 가질 가능성 높음
 - 리스크 모델(예, PSA)을 이용한 정성적 요소의 정량적 평가 방법에 대한 연구 지속
- 심층방어는 리스크 평가의 불확실성을 보조하는 핵심적 안전평가 요소
 - 가동원전의 현안 및 인허가 변경에서 중요한 의사결정자료로 활용 가능
 - 신형원전의 설계에서 RI-D(Risk Informed Design) 설계의 중요한 플랫폼으로 활용 가능

Introduction(2)

■ 심층방어 모델의 기본 심층방어 구조

- 초기 심층방어 개념에서의 물리적 방벽(연료봉/RCS/격납건물) 및 이를 보 조하는 시스템은 전반적인 심층방어의 일부 요소
- 본 연구에서는 IAEA INSAG-10에 따라 추상적 개념의 5단계 심층방어 구 조를 기본 틀로 사용
- 초기사건의 발생과 방어에서 방사선 사고 대비까지의 5단계

단계	목적	주요 수단	관련 계통(예)
1	비정상 운전 방지	강건한 설계 및 높은 품질의 설계, 운영, 관리에 대한 요건	없음(초기 기인자 빈도)
2	비정상 운전 제어	보호계통의 제어, 감시 및 검사	설계의 다중성, 다양성 및 보호계통
3	설계기준 사고로 제어(노 심손상 방지)	필수 안전기능을 담당하는 시스템	일차 냉각수 보충계통 등
4	중대사고 완화	격납건물 안전기능 담당 안전계통	격납건물 스프레이 등
5	방사선 사고 완화	공중 및 환경을 위한 관련 당국(기관)의 효과적인 연계	경보, 소개 절차 등

DID structure using risk model(2)

· 심층방어 평가를 위한 PSA 모델의 변환 구조

- 심층방어의 각 단계는 일반적인 PSA 모델의 구조를 이용하여 각 단계의 심층방어 구조를 모델하는 데 사용할 수 있음
- 모델 개발 시 고려사항
 - ½단계의 심층방어 구조의 분리는 현재의 PSA 모델에서 구현하기 어려우며, 초기사건 고장수목을 사용 할 경우 해결 가능
 - 3단계의 심층방어 구조는 핵심적인 영역으로, 사용되는 필수 안전기능을 분리하여 상세 분석을 고려할 수 있음
 - 4단계는 현재의 PSA모델 구조에서 단계 종속성의 평가가 어려울 수 있으며, 고장수목 방식의 L2 PSA모 델에서 종속성 구현 가능

심층방어 모델의 정량화

심층방어 사건수목 정량화 방법

 각 단계별 심층방어 단계는 상호 종속성을 가지므로, 매 단계를 최종상태로 가정한 단 계적 정량화를 수행해야 하며, 사고시나리오는 아래의 수식으로 도출됨

$$Df_i = \bigcap_{j=1} d(j)$$

Df_i : 심층방어 i단계까지의 실패사건 *d*(*j*) : j단계 심층방어의 실패사건

• 각 심층방어 단계는 상호 종속성을 가지므로 정확한 빈도 정량화는 아래의 수식으로 표현됨.

$$p(Df_{i}) = p\left(\bigcap_{j=1}^{i} d(j)\right) = p(d(1)) \cdot p\left(d(2) | d(1)\right) \cdots p\left(d(i) | d\bigcap_{j=1}^{i-1} d(j)\right)$$
$$p\left(d(i) | d\bigcap_{j=1}^{i-1} d(j)\right) : i-1 \text{ 이하 단계 심층방어와의 종속성이 고려된 i단계 심층방어 실패확률}$$

각 단계의 심층방어 단계 확률은 상호 종속성을 가지므로 수식 내에서는 구할 수 없으며, 순차적인 전체 시나리오 정량화를 통하여 다음의 식으로 도출

$$p\left(d(i)\left|d\bigcap_{j=1}^{i-1}d(j)\right)=\frac{p(Df_i)}{p(Df_{i-1})}\right)$$

DID 1&2 and PSA model

■ DID 1,2는 PSA 모델로부터 구할 수 없다.

- 대부분의 PSA에서는 특정 초기사건은 발전소에 유사한 위협을 가하는 사 건들의 집합으로써, 인과관계를 고려하지 않고 단순 사건으로 취급
- PSA의 초기사건이 DID 1,2단계를 포괄적으로 표현
- 전기 또는 냉각수와 같이, 필수 자원을 공급하는 계통의 실패에 의해 생기 는 초기사건은 이 계통의 실패를 고장수목 등의 논리모델로 평가 가능
 - 기기냉각수 상실사고, 교류/직류 전원상실 등
 - 냉각수 상실사고
 - DID 1(재질 특성 + ISA,...) +DID2 (사고 전 탐지 실패, LBB)

1	비정상 운전 방지	강건한 설계 및 높은 품질의 설계, 운영, 관리에 대한 요건	없음(초기 기인자 빈도)
2	비정상 운전 제어	보호계통의 제어, 감시 및 검사	설계의 다중성, 다양성 및 보호계통

초기사건 고장수목에서의 DID 분리

DID 1&2

- 1/2단계 심층방어의 실패는 (1) 최초 비정상을 유발하는 사건의 발생 및 (2)비정상 사건의 복구 실패에 해당
- 고장수목은 기본적으로 불리안 논리식이며, 단절집합에서 사건 분리 가

• 비정상과 복구사건의 분리

System failure = $TK + (PA + VA) \cdot (PB + VB)$

 $= TK + PA \cdot PB + PA \cdot VB + VA \cdot PB + VA \cdot VB$

DID 1, 2단계 분리방법

초기사건이 고장수목으로 표현된 경우의 심 층방어 분리

- 초기사건 고장수목은 최초의 비정상사건과 이에 대 한 다중성(있을 경우)을 가지는 기능의 연결에 의해 구성되며, 최종적으로 최소단절집합으로 나타낼 수 있음
- 초기사건 고장수목을 정량화하여 다음의 형 태를 가지는 최소 단절집합으로 일반화됨
 $Df_2 = IE = \sum_{i=1}^{n} a_i b_i$ $p(IE) = p(\sum_{i=1}^{n} a_i b_i)$
 - 여기서, a_i 는 초기 비정상사건이고, b_i 는 완화기능의 실패이며, 완화기능이 존재하지 않을 경우 $b_i = 1$

초기사건	빈도 평균 (/rcy ¹⁾)	오차 인자	근거
대형 냉각재상실사고	2.89E-06	19.4	NUREG-1829, Table 7.19 (과단 크기 정의에 맞게 재계산)
중형 냉각재상실사고	1.62E-04	18.4	NUREG-1829, Table 7.19 (과단 크기 정의에 맞게 재계산)
소형 냉각재상실사고	3.49E-04	8.4	NUREG/CR-6928 (IE-SLOCA)
증기발생기 세관 파단	4.92E-03	3.3	국내원전 경험(1993~2012년)
저압경계부 냉각재상실사고	1.01E-08	17.2	고유 분석
원자로 용기 과손	3.44E-08	67.5	NUREG-1829, Table 7.19
격납건물 내부 주증기관 파단	3.49E-04	8.4	NUREG/CR-6928 (IE-SLBIC)
격납건물 외부 주증기관 파단	7.32E-03	1.6	NUREG/CR-6928 (IE-SLBOC)
주급수 상실	4.10E-02	1.5	국내원전 경험(1993~2012년)
복수기진공 상실	7.38E-02	1.4	국내원전 경험(1993~2012년)
1차측 기기냉각수 부분 상실	4.92E-03	3.3	국내원전 경험(1993~2012년)
1차측 기기냉각수 완전 상실	2.12E-04	5.0	고유 분석 (EF는 가정)
1E급 4.16kV 교류모선 상실	4.31E-03	1.9	NUREG/CR-6928 (IE-LOAC 4160V) + 국내원전 경험
1E급 125V 직류모선 A 상실	2.46E-03	5.5	국내원전 경험(1993~2012년)
1E급 125V 직류모선 B 상실	2.46E-03	5.5	국내원전 경험(1993~2012년)
소외전원 상실	2.36E-02	1.7	국내원전 경험(상업운전~2012년)
일반 과도사건	7.06E-01	1.1	국내원전 경험(1993~2012년)
발전소 정전 (EDG 기동 실패)	8.14E-06	-	소외전원상실 사건수목에서 전이됨
발전소 정전 (EDG 운전중 고장)	3.68E-05	-	소외전원상실 사건수목에서 전이됨
정지불능 예상 과도사건	1.49E-06	-	원자로정지를 포함한 사건수목에서 전이됨

한울3,4호기 초기사건 목록 및 빈도

심층방어 단계별 계산-DID 1 and 2 (2)

DID 1단계는 비정상 상태로 전이하는 경우 이므로, 1단계는 다음과 같이 표현할 수 있다.

$$D(1) = \sum_{i=1}^{n} a_i$$

- DID 1단계는 위의 불리안 수식의 확률을 구하면 쉽게 구할 수 있다 $p(D(1)) = p(\sum_{i=1}^{n} a_i)$
 - 대부분의 사건이 값이 커서 희소사건 사상이 맞지 않으므로, MCUB를 이용하여 정확한 값을 구할 수 있음 $p\left(\sum_{i=1}^{n} a_i\right) = 1 - \prod_{i=1}^{n} (1 - p(a_i))$
 - 단, 초기사건 고장수목에서 a_i를 적절하게 찾을 수 있어야 함(시범 계산 참고)

DID ½단계 분리 시범 분석

• TLOCCW의 초기사건 고장수목을 이용하여 DID 1/2 단계를 분리함

- 현 한울 3,4 PSA 초기사건 FT 사용
- 2만여개의 MCS로 구성
- 분석에서는 수작업인 관계로 상위 100개만 사용함
 - 2.234e-4 / 21849
 - 2.09E-04 /100

DID 1단계 사건분리 및 정량화

 상위 100개의 cut-set중 초기 비정상사건(그림의노란색)를 식별하고 나머지 기본사건 은 DID 2단계의 사건이 됨

	4.55E-05	0.20358	0.20358 %ITLOCCW	SWMPK4Q-1A1B2A2B-IE				
1	2 3.71E-05	0.166099	0.369679 %ITLOCCW	CWCUK4Q-1A2A1B2B-IE	HCRE			
3	2.74E-05	0.122817	0.492495 %ITLOCCW	CCMPK4Q-1A2A1B2B-IE				
	1.73E-05	0.077225	0.56972 %ITLOCCW	CWCUK4T-1A2A2B-IE	CWCUR001B-IE	HCRE		
	1.73E-05	0.077225	0.646945 %ITLOCCW	CWCUK4T-2A1B2B-IE	CWCUR001A-IE	HCRE		
	6.58E-06	0.029443	0.676388 %ITLOCCW	HCCQK2D-CCWPAB-IE	HCRE			
	5.60E-06	0.025055	0.701442 %ITLOCCW	HCCQRCCPA-IE	HCCQRCCPB-IE	HCRE		
	3.32E-06	0.014841	0.716283 %ITLOCCW	CWCUR001B-IE	CWCUS002B-IE	HCCQRCCPA-IE	HCRE	
	3.32E-06	0.014841	0.731124 %ITLOCCW	CWCUR001A-IE	CWCUS002A-IE	HCCQRCCPB-IE	HCRE	
10	2.61E-06	0.01168	0.742803 %ITLOCCW	CWCUM002B-IE	CWCUR001B-IE	HCCQRCCPA-IE	HCRE	
1.1	2.61E-06	0.01168	0.754483 %ITLOCCW	CWCUM002A-IE	CWCUR001A-IE	HCCQRCCPB-IE	HCRE	
10	1.96E-06	0.008791	0.763274 %ITLOCCW	CWCUR001A-IE	CWCUR001B-IE	CWCUS002A-IE	CWCUS002B-IE	HCRE
1.1	1.55E-06	0.006918	0.770192 %ITLOCCW	CWCUM002A-IE	CWCUR001A-IE	CWCUR001B-IE	CWCUS002B-IE	HCRE
1.	1.55E-06	0.006918	0.77711 %ITLOCCW	CWCUM002B-IE	CWCUR001A-IE	CWCUR001B-IE	CWCUS002A-IE	HCRE
1 :	1.22E-06	0.005445	0.782555 %ITLOCCW	CWCUM002A-IE	CWCUM002B-IE	CWCUR001A-IE	CWCUR001B-IE	HCRE
10	1.21E-06	0.005435	0.78799 %ITLOCCW	SWMPK4T-2A1B2B-IE	SWMPR001PA-IE			
13	7 1.21E-06	0.005435	0.793425 %ITLOCCW	SWMPK4T-1A2A2B-IE	SWMPR001PB-IE			
1.0	1.21E-06	0.005401	0.798826 %ITLOCCW	CWCUR001B-IE	CWCUR002B-IE	HCCQRCCPA-IE	HCRE	
1 :	1.21E-06	0.005401	0.804227 %ITLOCCW	CWCUR001A-IE	CWCUR002A-IE	HCCQRCCPB-IE	HCRE	
20	1.11E-06	0.004988	0.809216 %ITLOCCW	HCRE	HHABK4Q-1A2A1B2B-IE			
21	8.52E-07	0.003813	0.813028 %ITLOCCW	CWCUK4D-1A2A-IE	HCCQRCCPB-IE	HCRE		
23	8.52E-07	0.003813	0.816841 %ITLOCCW	CWCUK4D-1B2B-IE	HCCQRCCPA-IE	HCRE		
23	7.18E-07	0.003212	0.820053 %ITLOCCW	CWCUR001A-IE	CWCUR001B-IE	CWCUW4D-2A2B-IE	HCRE	
24	7.15E-07	0.003199	0.823252 %ITLOCCW	CWCUR001A-IE	CWCUR001B-IE	CWCUR002A-IE	CWCUS002B-IE	HCRE
25	7.15E-07	0.003199	0.826451 %ITLOCCW	CWCUR001A-IE	CWCUR001B-IE	CWCUR002B-IE	CWCUS002A-IE	HCRE
20	6.71E-07	0.003003	0.829454 %ITLOCCW	CWCUK4D-1A2B-IE	CWCUR001B-IE	HCCQRCCPA-IE	HCRE	
2	6.71E-07	0.003003	0.832458 %ITLOCCW	CWCUK4D-2A1B-IE	CWCUR001A-IE	HCCQRCCPB-IE	HCRE	
23	6.02E-07	0.002693	0.835151 %ITLOCCW	CWCUR001A-IE	CWCUR001B-IE	CWCUW4Q-1A2A1B2B-IE	HCRE	
25	5.62E-07	0.002518	0.837669 %ITLOCCW	CWCUM002B-IE	CWCUR001A-IE	CWCUR001B-IE	CWCUR002A-IE	HCRE

DID 1 단계 정량화

- 위 그림의 파란색 행의 노란 부분이 최초 비정상사건이며(빨간색은 동일한 비정상사건임), 다음과 같이 REA 및 MCUB의 값을 도출함 $p\left(\sum_{i=1}^{n}a_{i}\right)=1-\prod_{i=1}^{n}\left(1-p(a_{i})\right)$
 - REA DID 1단계 빈도 : 1.82
 - MCUB DID 2단계 빈도 : 0.965
- 연간 1회 정도 초기 비정상사건이 발생함.
- DID 2 단계 정량화
 - DID 2단계 실패확률 : 2.17E-04

 $p((D2|D1) = \frac{p(D1 \cdot D2)}{p(D1)} = \frac{p(\sum_{i=1}^{n} a_i b_i)}{p(\sum_{i=1}^{n} a_i)}$

DID 3단계 분해 및 평가

DID 3단계

 초기사건이 발생하였을 경우, 이에 대응하여 초기사건이 원자로 핵연료가 손상되는 중대사고로 발전하지 않도록 제어하는 기능

• DID 3단계의 차별성

- 원자력발전소의 설계에서 대부분의 안전 자원은 이부분에 할당
 - 발전소정지/냉각/압력제어 등

핵심안전 기능을 모두 만족해야 달성 가능

- 원자로 반응도 제어
- 원자로 계통 압력 제어
- 원자로 계통 냉각재 재고량 유지
- 원자로 계통 열제거
- 격납건물 압력 제어

• 대부분의 핵심안전 기능은 다중 시스템으로 구성

 심층방어를 실제적으로 평가하기 위해 적절한 분리를 통해 심층방어의 상태를 세부적으로 평가할 필요 있음.

DID 3단계 세부 분리의 문제

- 2개의 핵심안전 기능을 가지며 각각 2개의 시스템이 각 핵심안 전기능을 담당하는 경우의 심층방어 상태 전이
 - ■핵심안전 기능 1 → (S₁₁, S₁₂)
 - ■핵심안전 기능 2 → (S₂₁, S₂₂)
 - 최대 3가지의 심층방어 상태를 가짐
 - $(S_{11}, S_{21}) \rightarrow (S_{12}, S_{21}) \rightarrow (S_{12}, S_{22})$
- M개의 핵심안전기능과 각각 N개의 담당 시스템을 가지는 경우, 심층방어의 상태 개수
 - 최대 M·N-1개
- 가능한 모든 상태를 반영할 경우, 심층방어를 지나치게 과장
 - 심층방어 단계의 정성적 속성을 왜곡

DID 3단계 분리방법 제안

- 다중의 안전기능을 수행할 수 있는 안전기능을 선택하여, 이를 기준 으로 세부 심증방어 단계를 분리
 - 원자로 계통의 열제거 기능은 통상적으로 압력 제어 및 냉각재 재고량 유지를 포괄적으로 지원
 - 냉각재 상실이 없는 경우, 보조급수를 통한 열제거는 반응도 제어를 제외한 모든 핵심안전 기능을 만족함
 - 표준원전에서는 보조급수 및 Feed & Bleed 기능이 이에 해당함
- 분리규칙
 - 3단계 세부 심층방어의 1층
 - 제1 원자로 열제거 계통의 실패 또는 기타 핵심 안전기능 유지 계통의 완전 실패(가 능한 계통의 전수 실패)
 - 3단계 세부 심층방어의 2층
 - 제2 원자로 열제거 계통의 실패 또는 기타 핵심 안전기능 유지 계통의 완전 실패
 - ~
 - 3단계 세부 심층방어의 n층
 - 제n 원자로 열제거 계통의 실패 또는 기타 핵심 안전기능 유지 계통의 완전 실패

DID 3단계 세부 분리된 사건수목의 예

■ 일반과도 사고(2차측 냉각+주입방출운전)

일반과도 사건의 DID 3.1 단계

■ 기기냉각수 상실사고(2차측냉각*냉각수주입+주입방출운전)

하나의 단계만 가지는 DID 3단계

•대형 냉각재 상실사고

■ 원자로 냉각재 계통의 파열로 2차측 냉각을 안전기능으로 이용할 수 없음

■소형 냉각재 상실사고

■ 원자로 냉각재 계통이 파열되었으나, 2단계의 DID를 가짐(복합 열제거)

심층방어 3단계 정량화

■시범원전의 DID 3단계 구조

- 일부 사건에서 3.2단계의 역할이 존재하나 많은 초기사건에서 3.2단계의 역할이 미미함
- 3.2단계의 향상을 위한 체계적 접근 필요

Conclusion

- 심층방어를 1,2,3 단계를 실제적으로 평가하기 위한 방법을 제 안함
 - 초기사건 고장수목을 이용한 DID 1,2 단계의 평가
 - •핵심 안전기능의 효과적 분리를 통한 심층방어 3단계의 분리 및 평가
- 가동원전의 심층방어의 전반적 체계에 대한 시범분석에 대한 발표 및 논의 예정
 - 표준원전에 대한 심층방어 체계의 전반적 분석 및 평가
 - DID 4,5 단계 평가 방법에 대한 논의
 - 신형원전 설계에서의 활용성 논의

Future Works

- 신형원전 설계를 위한 PSA 기술 개발
 - iSMR의 설계 목표는 노심손상빈도 1.0E-9 이하
 - 초기사건 이후 사고 시나리오를 완화하는 수준으로 달성 어려움
 - 초기사건 저감 기술의 개발이 필수적이며, 이를 위해 PSA에서 초기사건을 보다 상세히 점검할 수 있는 기술의 개발이 필요
 - 고장수목을 이용한 초기사건 모델
 - 재료의 설계 특성, ISI 등의 관리조치, 및 누설 탐지 능력이 반영된 냉각재 상실사고 의 초기사건 빈도 평가 모델
 - 외부 재해 발생에 따른 초기사건의 체계적 발생 메커니즘 모델

RIDM 기술 개발

- 대부분의 실제적 현안에 대해, RIDM 5원칙은 상호 독립적이지 않고, 얽혀있음.
- 필수적인 원칙, RIDM에서 리스크 분석의 전반적인 역할 등에 대한 연구 필요

DID 4단계 정량화 예제

- 4단계 DID는 TLOCCW PDS 사건수목 시나리오의 STC 전이관계를 파악하여, STC 3번에서 21번으로 전이되는 값을 LRF로 계산함
 - TLOCCW LRF = 4.75E-7-1.46E-7 = 3.29E-7
 - 종속관계가 없다고 가정하면, P(D4) = 3.29E-7/4.75E-7 =0.693

STC	Initiator Seq. No	Frequency	per(%)	소계	분율	STC	Initiator Seq. No	Frequency	per(%)	소계		
1						11						
	IE-TLOCCW 10	6.38E-08	4.27				IE-TLOCCW 10	7.81E-08	70.53			
2	IE-TLOCCW 8	4.64E-08	3.11			12	IE-TLOCCW 4	4.76E-09	4.3		p(D)	$f_i) = p(d(1)) \cdot p(d(2) d(1))$
	IE-TLOCCW 4	3.61E-08	2.41	1.46E-07	30.8		IE-TLOCCW 8	3.37E-09	3.04			$\cdots p(d(i) \bigcap_{i=1}^{i-1} d(i))$
3						13						$p(\mathcal{D}_{i}) = p(\mathcal{D}_{i})$
	IE-TLOCCW 10	4.78E-09	63.83				IE-TLOCCW 10	5.20E-08	46.51		p(a)	$(i) _{j=1}^{i} d(j) = \frac{1}{n(Df_{i-1})}$
4	IE-TLOCCW 4	9.00E-10	12.03			14	IE-TLOCCW 8	1.43E-08	12.84			<i>P</i> (2)(-1)
	IE-TLOCCW 8	2.06E-10	2.75	5.88E-09	1.2		IE-TLOCCW 4	3.27E-09	2.93	Df_i :	심층방	어 i단계까지의 실패사건
5							IE-TLOCCW 10	3.45E-09	18.45	d (j):	i단계	심층방어의 실패사건
	IE-TLOCCW 10	3.69E-09	37.82			15	IE-TLOCCW 8	3.29E-09	17.58	n(d)	i) ∩ ^{i−}	1 d(i))· 종속성을 고려하 i다계 심층방어 식패 횤
6	IE-TLOCCW 4	6.95E-10	7.13				IE-TLOCCW 4	1.02E-09	5.46	P (u (
	IE-TLOCCW 8	1.82E-10	1.86	4.56E-09	1.0		IE-TLOCCW 10	4.94E-10	17.87			
7						16	IE-TLOCCW 4	9.31E-11	3.37			
	IE-TLOCCW 10	6.76E-08	66.02				IE-TLOCCW 8	7.02E-11	2.54	6.57E-10	0.1	
8	IE-TLOCCW 4	8.45E-09	8.25			17						
	IE-TLOCCW 8	2.91E-09	2.85	7.89E-08	16.6	18						
9							IE-TLOCCW 11	7.44E-11	11.16			
	IE-TLOCCW 10	4.95E-08	41			19	IE-TLOCCW 9	1.83E-11	2.74			
10	IE-TLOCCW 8	1.70E-08	14.06			1	IE-TLOCCW 5	1.40E-11	2.1	1.07E-10	0.0	
	IE-TLOCCW 4	5.69E-09	4.71	7.22E-08	15.2	20						
						21	IE-TLOCCW 10	3.27E-09	1.41	3.27E-09	0.7	

리스크·신뢰도평가연구실 Risk and Reliability Research Division

DID 5단계 계산 예

■ L2 "PSA TLOCCW PDS-ET" to STC 및 암사망 확률 계산

- TLOCCW의 STC 분율 및 STC별 조기/후기 암사망 확률을 활용하여 5단계 DID 계산
- 암사망은 "암사망자수/총인구"로 방사능 사고가 발생하였을 경우, 사고의 영향을 받는 개인인 경우, 암사망 확률이며, 이를 DID 5 단계의 척도로 사용함
- TLOCCW DID 5단계는 전단계와 완전 독립을 가정하여 4.51E-4의 실패확률을 가짐

STC	Initiator Seq. No	Frequency	per(%)	소계	분율	STC	Initiator Seq. N	STC	원자로건물파손유형	전이 분율	노외노심용융물냉각	후기살수계통	내부사건	비율	조기사망 ¹	암사망 ²	상대기여
1						11		1	비파손 (원자로용기파손전 노심용융물 냉각)				5.213E-07	20.72%	0.00E+00	1.19E-06	
	IE-TLOCCW 10	6.38E-08	4.27				IE-TLOCCW 10	2	비파손 (원자로용기파손)	30.8			1.128E-06	44.84%	0.00E+00	5.87E-05	1.81E-05
2	IE-TLOCCW 8	4.64E-08	3.11			12	IE-TLOCCW 4	3	조기 격난거문 누석 파소 (Leak)			성공	1.088E-08	0.43%	0.00E+00	2.37E-05	0.00E+00
	IE-TLOCCW 4	3.61E-08	2.41	1.46E-07	30.8		IE-TLOCCW 8	4		1.2		실패	3.155E-09	0.13%	0.00E+00	4.51E-03	5.58E-05
3						13		5	조기 견난거문 파소 (RUPTURE)			성공	1.811E-08	0.72%	0.00E+00	1.06E-04	0.00E+00
	IE-TLOCCW 10	4.78E-09	63.83				IE-TLOCCW 10	6		1.0		실패	7.064E-09	0.28%	0.00E+00	5.64E-03	5.41E-05
4	IE-TLOCCW 4	9.00E-10	12.03			14	IE-TLOCCW 8	7			냉각	성공	0.000E+00	0.00%	-	-	
	IE-TLOCCW 8	2.06E-10	2.75	5.88E-09	1.2		IE-TLOCCW 4	8	히기 겨나거믄 느서 파소 (Look)		냉각	실패	4.079E-08	1.62%	0.00E+00	1.25E-04	2.08E-05
5							IF-TLOCCW 10	9			냉각실패	성공	1.603E-12	0.00%	0.00E+00	7.02E-06	0.00E+00
	IF-TLOCCW 10	3.69F-09	37.82			15	IF-TLOCCW 8	10		15.2	냉각실패	실패	6.948E-08	2.76%	0.00E+00	3.34E-04	5.07E-05
6	IE-TLOCOW 4	6.95E-10	713				IE-TLOCOW 4	11			냉각	성공	0.000E+00	0.00%	-	-	
	IE-TLOCOW 8	1.82E-10	1.86	4 56E-09	10		IE-TLOCOW 10	12	ㅎ기 겨나거무 파소 (DIIDTIIDE)	18.1	냉각	실패	4.248E-08	1.69%	0.00E+00	2.89E-04	5.24E-05
7	IL-ILOCCW D	1.022-10	1.00	4.502-05	1.0	16		13			냉각실패	성공	5.345E-13	0.00%	0.00E+00	3.03E-05	0.00E+00
/	IF THOSEW 10	6.765.00	66.02			10		14		14.6	냉각실패	실패	6.886E-08	2.74%	0.00E+00	3.59E-04	5.25E-05
		0.70E-08	00.02			47	IE-ILUCCW 8	15	원자로공동기초판용융관통 (BMT)	1.6			1.401E-08	0.56%	0.00E+00	6.73E-03	1.10E-04
8	IE-ILOCCW 4	8.45E-09	8.25			17		16	알파(α)-유형 파손	0.1			4.263E-09	0.17%	0.00E+00	1.10E-02	1.52E-05
	IE-TLOCCW 8	2.91E-09	2.85	7.89E-08	16.6	18		17	원자로용기 파손전 격납건물 파손				3.694E-07	14.68%	0.00E+00	1.29E-03	0.00E+00
9							IE-TLOCCW 11	18	경리시교			성공	2.688E-09	0.11%	0.00E+00	2.84E-04	0.00E+00
	IE-TLOCCW 10	4.95E-08	41			19	IE-TLOCCW 9	19	역나 콘페	0.0		실패	7.567E-10	0.03%	0.00E+00	1.11E-02	2.49E-06
10	IE-TLOCCW 8	1.70E-08	14.06				IE-TLOCCW 5	20	저압경계부 냉각재상실사고 (우회사고)				1.010E-08	0.40%	0.00E+00	4.70E-03	0.00E+00
	IE-TLOCCW 4	5.69E-09	4.71	7.22E-08	15.2	20		21	증기발생기 세관파단사고 (우회사고)	0.7			2.042E-07	8.12%	0.00E+00	2.80E-03	1.92E-05
						21	IE-TLOCCW 10	합계		100							4.51E-04

DID structure using risk model(4)

■심층방어 척도(1)

- 심층방어 강건도(Toughness)
 - 초기사건에 i에 대해, 단계 방어 확률의 불확실성을 고려한, 실패빈도의 역수

$$T(Df_i) = \log(p(Df_i))^{-1}$$
$$T(d(i)) = \log\left(p\left(d(i) \left| \bigcap_{j=1}^{i-1} d(j) \right) \right)^{-1}$$

- 심층방어 적용(Coverage) 수(Number) (or uncoverage number)
 - 초기사건에 i에 대해, 심층방어 단계의 누적 방어 단계의 수
 - 예로, 격리불가한 ISLOCA는 2 (초기사건+방사능 누출)
 - 심층방어 사건수목의 표제 tagging방법을 이용하여 구할 수 있음

* 강건도와 누적실패값을 2차원으로 도시함으로서 전반적인 발전소의 심층방어 수준 표현 가능

Example calculation for DID measure

- Large LOCA의 DID toughness

- 참조 발전소에 대한 단계별 및 전체 DID toughness
- 현재의 PSA모델에서는 DID 1/2단 계의 분리가 불가능하므로, 둘은 초 기사건 빈도에서 균일하게 나눔
- 잠정적인 계산 결과임
- DID toughness .vs. coverage number
 - 심층방어의 정성적/정량적 상태를 잘 표현할 수 있음
 - 높은 Coverage number와 낮은 failure frequency(우하변)이 발전소 의 좋은 상태를 의미
 - 잠정적인 값

DID structure using risk model(5)

■심층방어 척도(2)

■ 누적 심층방어 실패 빈도(frequency)

- 모든 초기사건에 대한 심층방어 실패빈도의 합
- 총 CDF와 유사한 개념. 단, 단계실패확률의 제한치를 가정함 $DFF_{j} = \sum_{i=1}^{m} p(Df_{ij})$

■ 프로그램 비의존 분율(fraction)

• 특정 초기사건에 대해, 심층방어의 프로그램(인적행위)의 비의존 분율을 나타냄

 $PIF_{i} = \frac{p(Df_{i} | \forall Hep_{j}, Hep_{j} = 1)}{p(Df_{i})}$