Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 19~20, 2022

Study on the wall heat transfer of condensation in the presence of NC gases

Jong Hyuk Lee^a, Kwi Seok Ha^{a*}

^aKorea Atomic Energy Research Institute, Yuseong-gu, Daejeon, 34057, Rep. of Korea

*Corresponding author: ksha@kaeri.re.kr

Background and Objective

- Wall film condensation phenomena is occurred near a cold wall when hot steam flows into internal or external flow channel along the wall.
- The Colburn-Hougen model (1934) has been widely used in T-H system code like as MARS, TRACE, RELAP and SPACE to predict the influence of NC gases on condensation.

Assessment

Steam General

MIT experiments (Siddique, 1992) were conducted under forced convection conditions with different NC gases

Run no.	Inlet Air mass fraction	Inlet Temp.	Inlet Press	Steam inlet flow rate	Air inlet flow rate
	(-)	(°C)	(Mpa)	(kg/s)	(kg/s)
7	0.08	119.9	0.209	2.609E-03	2.277E-04
18	0.12	100.0	0.110	5.562E-03	7.386E-04

Objectives of this paper

This study aims to clarify the effect of NC gases on wall heat transfer with the present model for wall condensation with different amount of NC gases.

Colburn-Hougen model

Basic concept

 P_{w}

W

< SPACE modeling >

Bp (C105

Virtual Nuclear Power Plant Technology Development Division