A Study on Thermodynamic Corrosion Behavior of Structural Material in Chlorine-Based Molten Salt Reactor Jisu Na¹⁾, Unho Lee¹⁾, and Young Soo Yoon^{1)*}

¹⁾ Department of Materials Science and Engineering, Gachon University, Republic of Korea * Corresponding author: benedicto@gachon.ac.kr

1. Abstract

- The MSR (Molten Salt Reactor) is a 4th generation nuclear reactor that is currently being noticed due to its low vapor pressure, white hydrogen generation, high operation stability, and thermal efficiency.
- In the case of chlorine-based salts, compared to fluorine-based salts, which are mainly studied, <u>1) high-energy operation is possible</u>, 2) white hydrogen production is possible at the same time, and 3) inexpensive, so it is attracting nuclear field researchers' attention.

3. Results & Discussion

Surface morphology analysis of before and after corrosion test

- Mechanical strength, high-temperature heat resistance, and excellent corrosion resistance at chlorine-based salts condition are essential properties of chlorine-based MSR structural materials.
- In this study, to find a structural material suitable for the long-term operation of MSR, three candidate materials were selected, and corrosion immersion tests was performed on NaCI-KCI molten salt.

2. Theory & Experimental

• Mechanical strength of substrates and chemical salt gradient

Table 1. Mechanical strength of selected three structural materials¹⁾

	Stainless Steel 316L	Hastelloy C-276	Hastelloy N10003	800 700
Melting range	1,400°C	1,370℃	1,400℃	- (C)
Tensile strength	550 MPa	727 MPa	800 MPa	- 009
Elongation	40%	70%	51%	empe
Thermal conductivity	15.0 W/m℃	21.9 W/m°C	23.6 W/m℃	400 -
Thermal expansion	16.5 um/m℃	14.1 um/m℃	14.9 um/m℃	
Yield strength	205 MPa	313 MPa	316 MPa	0
Hardness	95 HRB	87 HRB	96 HRB	Fig. 1. E

Fig. 3. SEM image of before and after corrosion immersion test for 48 h in molten salt at 800°C. ; Before/After : Stainless Steel 316L (a)/(d), Hastelloy C-276 (b)/(e), and Hastelloy N10003 (c)/(f)

Table 4. Structural materials surface mean thickness change of before/after corrosion immersion test for 48 h at 800°C

	Stainless Steel 316L	Hastelloy C-276	Hastelloy N10003
Before	55.548 nm	238.062 nm	206.253 nm
After	414.746 nm	283.454 nm	146.784 nm
	the second secon		
	(e)	The second secon	

Fig. 4. AFM image of before and after corrosion immersion test for 48 h in molten salt at 800°C. ; Before/After : Stainless Steel 316L (a)/(d), Hastelloy C-276 (b)/(e), Hastelloy N10003 (c)/(f)

Thermodynamic behavior of corrosion resistance

Table 2. Gibbs free energy of formation per molecule Cl₂ for various chlorides at 800°C

Reactions	Gibbs free energy (
$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$	-627.5 kJ/mol
$2K(s) + Cl_2(g) \rightarrow 2KCl(s)$	-671.1 kJ/mol
$Cr(s) + Cl_2(g) \rightarrow CrCl_2(s)$	–254.5 kJ/mol
$2/3Cr(s) + Cl_2(g) \rightarrow 2/3CrCl_3(s)$	–202.8 kJ/mol
$Fe(s) + Cl_2(g) \rightarrow FeCl_2(s)$	–199.8 kJ/mol
$2/3Fe(s) + Cl_2(g) \rightarrow 2/3FeCl_3(s)$	–109.3 kJ/mol
$Ni(s) + Cl_2(g) \rightarrow NiCl_2(s)$	–138.7 kJ/mol
$W(s) + Cl_2(g) \rightarrow WCl_2(s)$	–122.9 kJ/mol

os free energy ($riangle {G}$, Arrhenius equation $K(T) = A \cdot exp(-\frac{E_a}{PT})$ K(T) : Reaction rate (1/sec)

- T: Absolute temperature (K) R : Gas constant (8.314J/mol·K) A : Arrhenius velocity constant E_a : Activation energy (J/mol)
- Metal-Cl production mechanism $M + 2CI^{-} \rightarrow MCI_{2} + 2e$ $MCl_2 + M^{2+} \rightarrow 2Cl^-$

Corrosion immersion test in 0.506 NaCl – 0.494 KCl at 800°C

Table 3. Compositions of three structural materials ³⁾					
Stainless Steel 316L	Hastelloy C-276	Hastelloy N10003			
Bal.	5	4*			
10.0-14.0	Bal.	Bal.			
16.0-18.0	16	7			
2.0-3.0	16	16			
2.0	1*	0.8*			
0.75	0.08*	1*			
0.03	0.01*	0.06			
_	0.5*	0.35*			
_	2.5*	0.02*			
—	4	0.5*			
_	0.35*	0.5*			
0.1	_	—			
0.045	_	_			
0.03	_	_			
	3. Composition Stainless Steel 316L Bal. 10.0–14.0 16.0–18.0 2.0–3.0 2.0–3.0 2.0 0.75 0.03 - 0.03 0.045 0.03	3. Compositions of three struct Stainless Steel Hastelloy 316L C-276 Bal. 5 10.0-14.0 Bal. 16.0-18.0 16 2.0-3.0 16 2.0-3.0 16 0.75 0.08* 0.03 0.01* - 0.5* - 2.5* - 4 - 0.35* 0.1 - 0.045 - 0.03 -			

Fig. 2. Vision image of before and after corrosion immersion

test for 48 h at 800°C. ; Before/After : Stainless Steel 316L

(a)/(d), Hastelloy C-276 (b)/(e), Hastelloy N10003 (c)/(f)

Compositions change of before and after corrosion test

4. Conclusion

According to the results, Stainless Steel 316L is not suitable as a structural alloy for MSR because of the elution of Fe-ions. In the case of each Ni-based material with different Cr contents, the role of trace elements was identified to be

* refers to the maximum amount of component to be contained

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021M2D2A2076384)

Reterence

1) "AZO Materials.", Stainless Steel-Grade 316L-Properties, https://www.azom.com 2) Broström, Markus, et al. "Condensation in the KCI-NaCI system." Fuel processing technology 105 (2013): 142-148.

3) "HAYNES INTERNATIONAL.", https://www.haynesintl.com/alloys/alloy-portfolio_/ Corrosion-resistant-Alloys

important because the elution of Ni-ions became a problem, contrary to the prediction of the Gibbs free energy calculation. Hastelloy C-276 containing a trace elements Co (Cobalt), W (Tungsten), etc. in the Ni-Mo-Cr layer was the best effective for CI-based salt anti-corrosion, surface and structural stability. However, Hastelloy C-276 is also considered to be limited in its direct application to long-term MSR due to the size and shape change of grain length and boundary microstructure. Therefore, it needs necessary to supplement these problems with the surface coating of Hastelloy C-276 in further research.

Energy Materials Laboratory

EML.Gachon.ac.kr 冒護者

