Status of Irradiation Testing of ARAA Material in HANARO <u>Kee-Nam Choo(knchoo@kaeri.re.kr)</u>, Sung-Woo Yang, Sung-Jae Park, Yoon-Taek Shin Korea Atomic Energy Research Institute

Introduction

- Advanced Reduced-Activation Alloy (ARAA) as a structural material of fusion reactor has been required for an irradiation testing up to 3 dpa at about 330°C temperature.
- ✓ 16M-02K HANARO irradiation capsule was designed and is being irradiated at HANARO. The progress and status of the first irradiation testing of the ARAA material in HANARO are described.

HANARO Irradiation Capsule Systems

Cross sections of the 16M-02K irradiation capsule having different specimen-hole designs

ANS

ANS

ARAA specimens of the 16M-02K capsule

Specimen	Size (mm)	No (ea)	Location				
Standard Charpy	10x10x55	42	Stage 2,4,5				
Plate tensile	15x1x66	120	Stage 1,3				
Hardness/Thermal Con -ductivity	φ10x2	32	Stage 1,3				
SEM/EPMA	10x7x4	16	Stage 1,3				
TEM	10x10x15	8	Stage 1,3				
* ARAA: Advanced Reduced-Activation Allov							

Temperatures of the 16M-02K capsule at 30 MW power

Stage	тС	Calculated (GENGTC)		Calculated (ANSYS)		Measured*		
		He 1atm	0.4K He	He 1atm	0.4K He	He 1atm	He 40torr	
1	TC1 TC2	201 201	281 281	198 198	<370 <370	222 214	338 332	
	TC3 TC4	230 230	312 312	204 204	<370 <370	220 215	324 310	
2	TC5 TC6	226 243	296 305	206 220	<441 <441	218 224	312 313	
3	TC7 TC8 TC9 TC11	245 245 265 265	303 303 329 329	282 282 274 274	369 369 369 369	230 232 231 225	334 337 311 288	
4	TC10 TC13	251 241	311 303	235 217	<369 <370	242 239	315 299	
5	TC12 TC14	233 206	300 282	211 187	<370 <370	227 221	302 300	
* Heater power 0, control rod at 468mm								

1) Design & Irradiation of the ARAA specimens

- 1) Multi-hole designs (4 and 6 holes) of the specimens were adopted in the capsule to increase an economic efficiency of the volume and to improve the uniformity of specimen temperature at HANARO.
- 2) The specimens were designed that will be irradiated at about 330°C in the CT test hole of HANARO at 30 MW thermal output, using 1-dimensional code **GENGTC**, and 3-dimensional analysis program ANSYS 14.0.
- 3) The specimens will be irradiated in the CT test hole at 30MW thermal power for 8 irradiation cycles, at up to a <u>neutron fluence of 2.5x10²¹(n/cm²) (E>1MeV)</u> equivalent to <u>3.0 dpa</u> of radiation damage.

1) A new capsule (16M-02K) having 4 and 6-hole specimen allocations was designed, fabricated, and successfully irradiated for the first evaluation of the neutron

irradiation properties of the Advanced Reduced Activation Alloy (ARAA) of a Fusion reactor at HANARO.

- 2) The irradiation temperature of the ARAA specimens was stably controlled in the range of 295-337°C (satisfying user's requirement) during reactor operation cycles at HANARO of 30MW thermal power (aiming for 8 reactor operation cycles).
- 3) During the irradiation, abnormal reactor power drop from 30MW to 15MW occurred. It resulted in a decrease of the specimen temp. (246-301°C). Considering a

complicated recovery process of the irradiated materials, the effect of the temp. decrease on the irradiation properties should be carefully discussed later.

Conclusion

- ✓ The progress and status of the first irradiation testing of ARAA material at HANARO were summarized. The 4 and 6-hole structured capsule of the 16M-02K was designed, fabricated, and successfully irradiated
 integral. for the first evaluation of the neutron irradiation properties of ARAA of a fusion reactor. ✓ During the irradiation testing, abnormal reactor power drop from 30MW to 15MW occurred and resulted in a
- decrease of the specimen temperature. The temperature of the specimen in the range of 295-337°C was changed to the range of 246-301°C. The effect of the temperature decrease on the irradiation properties of the ARAA should be carefully discussed later.

Korea Atomic Energy **KAERI** Research Institute

Korean Nuclear Spring Meeting, 2022