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1. Introduction 

 
 Radioisotope Identification (RIID) algorithms for 

gamma-ray spectroscopy are widely used to quantify or 
identify the radioactive materials in medical, industrial, 
and scientific fields. High-purity germanium (HPGe), 
LaBr3, NaI(Tl), and CsI(Tl) gamma spectrometers are 
commonly used to measure radioisotopes (RIs). 
NaI(Tl) and CsI(Tl) spectrometers are also commonly 

used in practical monitoring due to their low price, high 
detection efficiency and easy production in a variety of 
sizes and shapes. a complex and accurate gamma 
spectrum unfolding algorithm must be used to realize 
reliable and effective RIID owing to the low energy 
resolution [1]. The challenging aspects in gamma 
spectrum unfolding tasks pertain to spectral data 
smoothing, background subtraction, and overlapping 
peak separation. In this context, it is necessary to 
identify suitable mathematical methods according to the 
application and optimal parameters in an iterative 
manner. 
convolutional neural networks (CNNs) can give the 

ability to quantify and identify the radioactive materials 
without the gamma spectrum unfolding tasks by pattern 
recognition to identify characteristics in spectrum 
through learning. The use of CNNs for RIID [2-6] is 
recent, and research is necessary to enhance the RIID 
performance of CNNs. In this study, one-dimensional 
(1-D) gamma spectral data of RI mixtures, measured 
using a CsI(Tl) spectrometer, are transformed to two-
dimensional (2-D) image data with the method we 
suggest, which are used as training inputs for the CNNs. 
The performance of models trained using the 1-D and 
transformed 2-D data is compared and evaluated. 
 

2. Methods 
 
2.1 Experimental setting 
 
The experimental setup to measure the energy spectrum 
is as shown below in Fig. 1. A cube-shaped CsI(Tl) 
crystal (Amcrys, 13 × 25 × 51 mm3) with PTFE 
reflector (1 mm) is coupled to 4 SiPMs (SensL microFC 
60035, 6×6 mm2) to which a +28 V is applied each. A 
preamplifier is used to convert the radiation-induced 
charges into a voltage and an amplifier is used to for 
pulse shaping. The generated pulses are digitized by 
Analog-to-digital converters(ADC). Then, they are 
sorted, stored and transferred to PC by Field 
Programmable Gate Array (FPGA). 8 g-ray sources 
(241Am, 57Co, 137Cs, 60Co, 22Na, 133Ba, 109Cd, 54Mn) are 

all standard radioactive sources and placed at a distance 
of 20 mm in front of the CsI(Tl) crystal. They are 
measured for more than about 1 minute with standard 
sources so that the typical spectral shapes can be 
sufficiently displayed. 

 
Fig. 1. Schematic of the experimental setup for measurement 
of pulse height spectrum for γ-ray sources 
 
2.2 Data Generation 
 

Datasets are generated by data synthesis of the spectra. 
First, pulse height spectra of single RIs (241Am, 57Co, 
137Cs, 60Co, 22Na, 133Ba, 109Cd and 54Mn) obtained from 
the experiment are all normalized to one, respectively. 
Each spectrum  of single RI becomes the base element 
for the synthetic spectrum of multiple RIs, multiplied 
by synthesis coefficient  which is randomly selected. 
The synthesized artificial spectrum  can be expressed 
as a linear combination of the base spectrum with the 
coefficient as in equation (1).  =    (   (1) 

 is the total number of RIs (8, in this study), and  
represents the synthesis coefficient randomly selected 
between 0 and 1, corresponding to the relative activity 
of RI  for the th random generation. The sum of the 
eight synthesis coefficients for each  is 1. Under these 
spectral synthesis conditions, 15,000 1-D spectral data 
points for multiple radiation sources in various ratios 
can be generated without additional experimentation.  
As inputs for CNN learning, 15,000 2-D input data are 
prepared in addition to the 15,000 1-D input data. The 
transformation method of 1-D to 2-D data can be 
summarized as follows: We sequentially cut 39 
channels in the 1-D spectral data and arrange them to 
form 39 rows. The obtained 2-D image data sized 39 × 
39 is different from the typical spectrum image but has 
the same information as the 1-D data sized 1 × 1521.  
 
2.2 CNNs For RIID 
 

CNNs are trained to extract and identify the best 
feature such as the photo peak and Compton continua 
for identifying and quantifying RIs in a mixture of RIs. 
To compare the performance of CNN models, 15,000 1-
D spectral data points and 15,000 2-D data points 
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transformed from the 1-D data are prepared. We split 
each set of the 15,000 data points into training, 
validation, and test sets in the ratio 67:13:20 through 

random splitting. Therefore, for each dataset, the 
training, validation, and test sets include 10,000, 2,000, 
and 3,000 data points, respectively. 

 
Fig. 2. Training process based on 1-D spectra and transformed 2-D image data for multi-RIID using CNNs, and CNN model 

summary.

The prepared inputs are used to train and test the 
CNNs by using the open source Keras library in the 
Python environment [7]. The performance of the trained 
CNN models is evaluated in terms of the mean 
magnitude of relative error (MMRE) between the test 
values (actual relative activity) and predicted values 
(predicted relative activity). The MMRE for each RI can 
be defined as in equation (2).  (2) 

 and  are the test and predicted values of the 
activity for RI  at the th sampling, respectively.  is 
the sampling number for the test set. 

The generation and training processes of 1-D spectra 
and transformed 2-D image data for multi-RIID using 
CNNs are illustrated in Fig. 2. 

 
3. Results and Discussions 

 
Model training is performed 10 times for each model to 
estimate the mean MMRE and uncertainty. Notably, the 
MMRE is calculated by sampling test values greater 
than 0.01 and the corresponding predicted values 
because the two models cannot predict relative activities 
of RIs less than 1%. The performance values (MMREs) 
of CNN models trained with 1-D spectral inputs and 
transformed 2-D inputs are shown in Fig. 3. A smaller 
MMRE indicates a smaller difference between the 
actual and predicted values, representative of superior 

performance. The model trained using 2-D inputs 
exhibits a higher performance for seven (241Am, 57Co, 
60Co, 22Na, 133Ba, 109Cd, 54Mn) of eight RIs. 
Specifically, this model exhibits a significantly a 
smaller MMRE and uncertainty for 109Cd than those 
associated with the model trained with 1-D inputs. Both 
models achieve reasonably small MMRE values of 
approximately 4% or less, except in the cases of 133Ba 
and 109Cd. 

 
Fig. 3. Mean magnitude of relative error (MMRE) between the 
actual and predicted activities for each RI in a mixture of RIs. 
The sampling range of test values is 0.01–1.00. Error bars 
(uncertainty) pertain to the standard deviation of the mean 
(±1 ). 
 
For both models, the MMRE for 109Cd is significantly 
larger than those for other RIs, primarily because the 
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normalized spectrum of 109Cd (Fig. 2) is significantly 
smaller than those of other RIs. Thus, the models cannot 
accurately predict the relative activity of 109Cd as the 
feature associated with 109Cd is not prominent and is 
hidden in the RI mixture spectrum. 
 

4. Conclusions 
 

We use two types of CNNs to identify and quantify 
RIs in a mixture of RIs through a gamma spectrum 
measured using a CsI(Tl) spectrometer. One model is 
trained with raw 1-D spectral data, and the other model 
is trained with the 2-D data transformed from 1-D data 
using the method. We compare the RIID performance of 
the two models. The model trained with the transformed 
2-D data outperforms the model trained with the 1-D 
data. Therefore, the proposed method of transforming 1-
D spectra into 2-D data is a promising approach for 
training CNNs for RIID. Future work can be aimed at 
enhancing the model by considering the effects of the 
backgrounds, distance, count, and peak shift to facilitate 
the practical application of the CNN model in diverse 
fields.  
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