

Corrosion Behaviors of SS316 and Ni-base Alloys in Molten LiCI-KCI Salt at High Temperature

NQe Nuclear & Quantum Engineering

Jun Woo Park and Jong-II Yun^{*} Department of Nuclear and Quantum Engineering, KAIST, Korea

Introduction

Properties of Molten Salt

- Liquid phase due to high temperature and low vapor pressure
- High solubility of actinides and lanthanides

Case 1: Pyroprocessing

Utilizing molten salts as the electrolyte to separate U and TRU

Case 2: Molten Salt Reactor

Utilizing molten salts as the coolant (involving molten nuclear fuel)

Molten Salt Reactor (MSR)

- Fluoride (LiF-NaF-KF, LiF-BeF₂, etc.) medium for thermal reactors
- Chloride (NaCl-MgCl₂, NaCl-MgCl₂-KCl, etc.) medium for fast reactors
- Operation at high temperature for a long period of time with impurities (nuclear fuels, fission products, corrosion products, oxides, etc.)

\rightarrow Structural Material Corrosion Issue

but, a lack of knowledge under various conditions of chloride salts

Experimental

XRD Analysis

- Experiments in Ar-filled glovebox at 500°C for 100hrs/200hrs
- Use of LiCI-KCI eutectic salt (99.99% purity, Anhydrous beads)
- Preparation of specimens (1.5mm×5mm×10mm) ground up to #2000
 SiC paper and polished with 0.05µm alumina suspension

Elemental compositions of MSR structural materials

Element [wt%]	SS316	Alloy 617	Hastelloy N
Ni	10.7	bal.	bal.
Cr	17.3	22.9	7.3
Мо	2.0	9.5	16.6
Fe	bal.	1.1	4.3
Со	-	13.1	-
Si	0.7	0.2	0.3
Mn	1.0	1.0	0.5
С	0.07	-	0.06

SEM and EBSD Analysis

Dissolution Behaviors Depending on Grain Orientation

 Higher dissolution for grains close to {111} planes, lower dissolution for grains close to {001} planes, as reported in aqueous corrosion systems ^[1,2]

Grain Surface Energy and Adsorption of Corrosion Inhibitor

- Approximate grain surface energy = $2 \frac{2|h|+|k|}{\sqrt{h^2+k^2+l^2}} \times \frac{E_b}{d^2} \rightarrow \text{lowest SE at {111} planes [1,2]}$
- Lower adsorption of chemical species at lower surface energy grains ({111}) ^[3,4]
- \rightarrow Weak adsorption of corrosion inhibitor at lower surface energy grains ({111})

Conclusions and Outlook

Corrosion Behaviors of SS316 and Ni-base Alloys at 500°C in LiCI-KCI

- There is no change in the phase
- Usually, a grain-orientation dependent dissolution takes place
- → Further Experiments under Various Conditions
- Different salts, temperature, and structural materials
- Identify the chemical species that can act as corrosion inhibitors in molten salts

Reference

[1] S. Wang et al. (2014), Corros. Sci., 85, 183-192.
[2] S. Dong et al. (2020), Mater. Des., 191, 108583.
[3] H.-T. Liu et al. (1982), Surf. Sci., 114, 431-44.
[4] A.N. Pour et al. (2015), Int. J. Hydrogen Energy, 40, 7064-7071.

Acknowledgement

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (MSIP) (No. NRF-2020M2D4A1070724 and NRF-2021M2C7A1A02076339) and the Circle Foundation (Republic of Korea) (No. TCF2021-01)

Korean Nuclear Society Spring Meeting, Jeju, Korea, 2022