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1. Introduction 

 
Ill-posed problems such as deblurring, denoising, and 

super-resolution, are key issues in the computer vision 

field. In general, indirect-conversion x-ray detectors 

suffer from low spatial resolution due to the x-ray and 

light spreading in the phosphor layer, which is 

converting incident x-rays to light photons. This signal 

spreading makes it difficult to inspect micro-defects in 

samples such as ball-grid arrays in printed circuit boards 

(PCBs). While the signal spreading can be reduced by 

using a thinner phosphor layer, it requires high x-ray 

exposure, which leads to a high tube load. 

In this study, we propose a deep learning method, 

which is one of the most powerful tools for ill-posed 

problems to deblur the low-resolution PCB images. Two 

network models based on the U-Net [1] architecture are 

proposed and the training and testing image sets are 

obtained experimentally using x-ray detectors with two 

different-thick phosphor layers. The performances of 

proposed networks are quantitatively evaluated in terms 

of spatial resolution and noise. 

 

2. Methods and Materials 

 

2.1 Datasets and preprocessing 

 

Datasets for training and testing the networks were 

obtained experimentally by a lab-made x-ray imaging 

system. An x-ray detector was composed of a 1024 × 

512-formatted photodiode array (RadEye 1TM, Teledyne 

Rad-icon Imaging Corp.) and replaceable phosphor 

layers. Two gadolinium oxysulfide (Gd2O2S:Tb) 

phosphor layers with different thicknesses were 

considered; 90 μm for high-resolution (HR) imaging and 

300μm for low-resolution (LR) imaging. X-ray images 

for 14 different types of PCB samples were acquired 

using 60 kVp and 90 kVp tungsten-target x-ray spectra 

and two phosphor layers. The LR and HR images were 

aligned using the homography method to minimize 

geometric misalignment due to the replacement of 

phosphor layers. The number of images was augmented 

6 times by rotating and flipping and each image was 

divided into 10 sub-patches. Therefore, we have 3360 

sub-patches in total. 

 

2.2 Network architecture 

 

The signal spreading in the LR images y can be 

expressed briefly by, 

 

                             𝑦 = 𝐻 ∗ 𝑥 + 𝑣, (1) 

 
 

where 𝐻  denotes the point-spread function of the LR 

detector, 𝑥  is the ideal projection image, and 𝑣  means 

additional electronic noise. The networks should be 

trained to predict the ideal projection image 𝑥 from LR 

images 𝑦, but we set the HR images as a target rather 

than 𝑥 since they cannot be acquired experimentally.  

Figure 1 shows two U-Net variant networks proposed 

for the restoration of the LR images. As shown in Fig. 

1(a), U-Net variant 1 (UV1) has the same architecture as 

U-Net but a skip-connection between input and output is 

employed for the preservation of high-frequency 

information and stability of the network. U-Net variant 2 

(UV2) also has the skip-connection between input and 

output but it has three different types of convolutional 

kernels, which can account for the large signal spreading 

in the LR detector, for its first layer.  Conventional 3 × 3 

convolutional kernels may not be enough to cover the 

point-spread function of the LR detector. In this regard, 

the dilated convolutional kernels with dilation 4 and 7 are 

used to the first layer of UV2. 

 

2.3 Performance evaluation 

 

The performances of the proposed networks are 

comparatively evaluated using the peak signal-to-noise 

ratio (PSNR) [2] and structural similarity (SSIM) [3] 

index between output and HR images. Furthermore, the 

modulation-transfer function (MTF) [4] and normalized 

noise-power spectra (NNPS) [5] are evaluated to 

investigate the resolution and noise performances in the 

spatial-frequency domain. The MTF and NNPS are 

respectively calculated using additional edge-knife and 

flood-field images, which are deblurred by networks. 

 
 

Fig. 1. Architectures of the proposed network models: (a) 

U-Net variant 1 and (b) U-Net variant 2. 
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The NNPS is multiplied by air kerma 𝐾 at the detector 

surface for a fair comparison. 

 

3. Preliminary Results 

 

Tab. I summarizes the PSNR and SSIM values for the 

test images. the proposed networks show slightly higher 

performances compared to the U-Net. 

Fig. 2 compares the deblurred images and 

corresponding SSIM distributions. Visual inspection 

validates that all the networks improved the spatial 

resolution of a given LR image.  

Fig. 3 shows the MTF and 𝐾 ∙ 𝑁𝑁𝑃𝑆 performances for 

images predicted from various network models. U-Net 

shows the best fit for the target MTF but provides slightly 

lower 𝐾 ∙ 𝑁𝑁𝑃𝑆  performance at the mid-frequency 

ranges (3~6 mm-1) compared to the proposed networks. 

 

 
 

 
 

4. Discussion and Conclusion 

 

Two U-Net-based networks for deblurring low-

resolution x-ray images have been investigated. The 

deblurring performance of U-Net was improved by 

adding the skip connection and the additional 

convolutional filters that can cover the extent of the 

point-spread function of the LR detectors. The spatial-

frequency analysis using MTF and NNPS showed good 

agreement with the conventional PSNR and SSIM 

assessment. This evaluation method may be helpful to 

figure out how the neural networks work in a specific 

frequency.  

However, since the networks were trained only with 

the PCB images, the predicted images may suffer from 

unexpected artifacts when the edge-knife images, which 

have a much simpler structure, are input to the networks. 

These artifacts may distort the MTF curve. The contrast-

transfer function measurement using line-pair patterns 

may be an alternative for assessing spatial-resolution 

characteristics. More detailed analysis in the spatial-

frequency domain and training and testing the networks 

with various resolutions will be our future studies. 
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 U-Net UV1 UV2 
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Fig. 3. Comparison of (a) MTF and (b) 𝐾 ∙ 𝑁𝑁𝑃𝑆 for various 

networks. 

 
 
Fig. 2. Comparison of (a) the projection images for a PCB sample and (b) the corresponding SSIM distributions. The projection 

images are displayed in a range of 𝜇 ± 4𝜎. 
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