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1. Introduction 

 
Process variables include not only the uncertainty of 

an inherent of the instrument, but also the uncertainty 

occurred due to the surrounding environment or 

instrument failure [1,2,3]. In particular, the uncertainty 

of process variables used for small modular reactors 

(SMRs) is likely to be more increased due to the compact 

system size, the geometry of changed system, and the 

harsh environment by the operating nature. Also, these 

conditions are led to a limitation of diversity and 

redundancy for installing process instruments. Therefore, 

the estimation of accurate state for process variables used 

in the SMR should be backup as a problem to be 

overcome in the future [4,5] The data reconciliation (DR) 

technique is widely used for this purpose. The DR is a 

methodology for estimating an accurate state by re-

distributing the uncertainty of measured variables such 

that first principles are satisfied. This can be considered 

a potential method for minimizing the uncertainty of 

measured variables occurred by the nature of SMR. 

Furthermore, it is necessary to estimate the accurate state 

of time dependent parameters on the basis of the dynamic 

data reconciliation (DDR) technique.  

With sharing this motivation, this study was 

investigated how the impoverished quality in 

measurement affects the state estimation to apply the 

DDR technique for estimating the state. The Resistance 

Temperature Detector (RTD) and Thermocouple (TC), 

which is used in SMR as a thermometry, were selected 

for comparative analysis since the temperature variable 

is significant for maintaining the robustness of nuclear 

fuel [6]. Also, the characteristics of each instrument are 

suitable for comparative analysis because they have 

opposite characteristics. 

 

2. Methods and Results 

 

This section describes the characteristics of RTD and 

TC and the DDR technique. 

 

2.1 Characteristic of RTD and TC 

 

According to International Electrotechnical 

Commission (IEC) 60751 and ASTM E644 standards, 

the specifications of RTD and TC are shown in Table 1. 

 

 

 

Table 1. Characteristic of RTD and T.C 
 
 

Type 
Response 

time(τ) 
Tolerance 

RTD 6 sec 
Class A: ± (0.15 + 0.002*t)°C 

Class B: ± (0.3 + 0.005*t)°C 

TC 2 sec 
Class A: ± 1.5°C (or ±0.4%) 

Class B: ± 2.5°C (or ±0.75%) 

 

Each of instruments have opposite characteristics. 

RTD has a slow response time, while the accuracy is high. 

In the case of TC, the response time is high, but the 

uncertainty of the measured value is high. In addition, 

since TC is more available under harsh environmental 

conditions than RTD, it is widely used as measuring the 

inlet and outlet temperature of the reactor core. Due to 

the contradictory characteristics and usage environment, 

it is not easy to find optimal usage in the SMR design 

process [7].  

 

2.2 Steady State Data Reconciliation 

 

DR is a constraint least square objective function to 

obtain an optimal solution based on first principles such 

as mass balance and heat balance. If the system or 

process does not change for a certain period of time, the 

steady state DR that uses the average value of the 

measured values is useful and is expressed as Equation 

(1) [8].  

 

                  𝑚𝑖𝑛(𝑦̂, 𝑧̂) =  (𝑦 − 𝑦̂)𝑇 𝑉(𝑦 − 𝑦̂)              (1) 

Subject to    𝑓(𝑦̂, 𝑧̂) = 0  

𝑔(𝑦̂, 𝑧̂) ≥ 0 

 

Where y is measured value, 𝒚̂ is reconciled value, 𝒛̂ is 

unmeasured value and V is covariance matrix. And f and 

g is first principle model. 

 

If the redundancy of measurement points and valid 

physical model are guaranteed, it is possible to minimize 

random errors such as incorrect installation of the 

instrument, noise caused by the surrounding 

environment, and fluctuations. In addition, it has the 

advantage of detecting gross errors caused by instrument 

failure and miscalibration. 
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2.3 Dynamic Data Reconciliation 

 

DDR is used when input parameters and system model 

changes in real time. DDR, which is frequently used in 

discrete time models, is expressed as Equation (2) [8]. 

 

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘−1 + 𝑤𝑘−1               (2) 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  

 

Where 𝒙𝒌 state variables, 𝒖𝒌 is adjusted input, 𝒘𝒌  is 

system model disturbance, 𝒚𝒌  is measured values, and 

𝒗𝒌 is measurement error. And, A is equation of system 

model and B is equation of optional control input and H 

is state equation related measurement  𝒚𝒌. The subscript 

k is time. 

 

A is a system model for estimating the state of step at 

k in k-1 state and it changes with each sampling time due 

to a time dependent function. 

 

In Equation (2), system model disturbances express 

system state following the normal distribution having a 

zero mean in Equation (3). And they are related with 

covariance matrices 𝑹𝒌 and 𝑸𝒌. 

 

w~𝑁(0, 𝑄)                             (3) 

𝑣~𝑁(0, 𝑅)   

 

As shown in Equation (2), due to the random 

disturbance of the system model, the true value of 

variables at each sampling time always contains the 

random error. Therefore, in order to derive the optimal 

state estimation at time k, the least squared function at 

time k is applied as in Equation (4). 

 

𝑚𝑖𝑛(𝑥̂𝑘 , 𝑦̂𝑘) =  ∑ (𝑥𝑘 − 𝑥̂𝑘)𝑇𝑉(𝑥𝑘 − 𝑥̂𝑘)𝑘
𝑡=0      (4) 

 

Here, it should be noted that there is 𝒖𝒌 , which is 

applied as a weight by calculating the deviation between 

the measured value and the estimated value every k time. 

This determines how much measurement value is 

reflected in the result value. 

 

Since DDR is a Bayesian recursive estimation model 

that estimates the information of k time using the 

information of k-1 time, therefore, the above series of 

processes is calculated recursively. In other words, DDR 

is a filtering method for estimating the state using data 

which is acquired during all sampling time.  

 

2.4 Physical Model 

 

In this study, the one-dimensional heat conduction 

equation of Eq. (8) was used as the physical model to 

demonstrate the DDR. 

 

                                    
𝜕𝑇

𝜕𝑡
=  𝑘

𝜕2𝑇

𝜕𝑥2                               (8) 

 

Where T is temperature, t is time, x is length and k is 

thermal conductivity. 

 

In addition, the finite-difference method was applied 

as shown in Equation (9) to calculate the node-wise 

temperature distribution by applying the boundary 

condition of the heat conduction problem [9]. 

 

    𝑇𝑖
𝑘+1 = 𝑘

∆𝑡

∆𝑥2 𝑇𝑖−1
𝑘 (1 − 2𝑘

∆𝑡

∆𝑥2)  𝑇𝑖
𝑘 + 𝑘

∆𝑡

∆𝑥2  𝑇𝑖+1
𝑘     (9) 

 

2.5 Reference Data Set 

 

First, numerical solutions were obtained as a reference 

data set for analysis by applying the initial conditions to 

the one-dimensional heat conduction equation 

mentioned in Section 2.3 below. 

 

T=0 at x=0, for t>0 

T = 45℃ for t=0, x>0  

α = 4.7*E-7 m2/s 

r = α∆t/∆x2 

Final time is 200sec 

 

And, the measured value 𝒚𝒌  was produced by 

applying the standard deviation of instrument and a 

normally distributed random number to the mean value. 

 

3. Result 

 

In this study, the sensitivity evaluation was performed 

in consideration of the various form of impoverished 

variable such as a measured variable with high 

uncertainty of RTD occurred by the slow response time 

and inaccurate measured variable of TC occurred due to 

the inaccurate system model of instrument.  

First of all, the DDR was conducted assuming that all 

variables were perfectly acquired in a normal condition, 

which is case 1. The case 2 is consideration of a 

measured variable with high uncertainty at a specific 

sampling time due to a long response time like RTD. The 

sensitivity analysis about the measured variables with 

high uncertainty can be performed by adjusting the factor 

H, which is a value representing the state of the measured 

value in Equation (2). The case 3 is tried to the sensitivity 

evaluation in consideration of an inaccurate measured 

variable such as such as TC, which is a fast response time 

but inaccurate. It was analyzed by adjusting the factor A, 

which represents the accuracy of the measurement 

system in Equation (2). And, the standard deviation for a 

covariance error was assumed to be 2°C. 

 

3.1 Result of Case 1.  

( 𝝈𝒔 = 𝟎. 𝟏, 𝝈𝒚 = 𝟐, 𝝈𝒊 = 𝟎. 𝟖 + 𝒓𝒂𝒏𝒅, 𝑯 = 𝟏 , where 

𝝈𝒔  is Standard Deviation of System Model, 𝝈𝒚  is 

Standard Deviation of Measured Value, 𝝈𝒊 is Standard 
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Deviation for initial value with random value following 

the Gaussian distribution.) 

 

Figure 1 is showing the result of case 1. Measured 

variables 𝒚𝒌 are more sporadically distributed than the 

numerical solution due to the uncertainty of the measured 

variable. In other words, it cannot be regarded as an 

accurate state estimation due to the uncertainty of the 

measured variable. On the other hand, the result derived 

from DDR was approached almost consistent with the 

numerical solution.  
 

 
Figure 1. the result of case 1 

 

3.2 Result of Case 2. 

(𝝈𝒔 = 𝟎. 𝟏, 𝝈𝒚 = 𝟐, 𝝈𝒊 = 𝟎. 𝟖 + 𝒓𝒂𝒏𝒅, 𝑯 = 𝟎. 𝟓 ) 

 

In case 2, sensitivity analysis was performed 

considering when the factor H was 0.5, that is, only the 

measured variable is 50% saturated. As shown in Figure 

2, measured variable with high uncertainty show that 

accurate state estimation was impossible. This indicates 

that the data having a high uncertainty cannot eventually 

be used for state estimation. 

 

 
Figure 2. the result of case 2 

 

3.3 Result of Case 3. 

 (𝝈𝒔 = 𝟓, 𝝈𝒚 = 𝟐, 𝝈𝒊 = 𝟎. 𝟖 + 𝒓𝒂𝒏𝒅, 𝑯 = 𝟏 ) 

 

In Case 3, sensitivity analysis was performed by 

adjusting the factor A, which is representing the accuracy 

of system model. Figure 3 shows the DDR results using 

inaccurate measured variables. According to the result of 

case 2 and 3, inaccurate measured variables are more 

accurate than variables with high uncertainty when 

perform the DDR. However, this result eventually shows 

that it is difficult to estimate the accurate state estimation 

when the inaccuracy of the measured variable is 

increased. 

 

 
Figure 3. the result of case 3 

 

4. Conclusions 

 

In this study, the dynamic data reconciliation 

technique was applied to perform the sensitivity analysis 

for observing how the uncertainty of measured variable 

and the inaccuracy of system affect the results of the 

DDR. Eventually, it was found that the measured 

variable with high uncertainty such as RTD is more 

influencing to the state estimation process of DDR than 

variables by inaccurate system such as TC. As a further 

study, we will apply the DDR to some of actual system 

models of the SMR. In addition, as the results discussed 

on above, we will propose a method to improve the 

impoverished data quality occurred by sampling time 

using a data preprocessing. 
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