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INTRODUCTION

¢ Process variables are important factor for representing the plant state. g al ‘K
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> Due to the impoverished data quality - the process performance and control is deteriorated.
% The uncertainty of process variables used for Small Modular Reactors (SMRs) is likely to be
more increased
» Due to the compact system size, the geometry by changed system, and the harsh
environment by the SMRs nature.

» Reduced the diversity and redundancy of instruments as well.

% The estimation of accurate state for SMR should be backup as a problem to be overcome in the
Ref. nuscalepower.com

future. . |
3 SMART Finens Korea Atomic Energy

AERI" Research Institute
Ref. IAEA, SMR book, 2020
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INTRODUCTION

¢ In particular, it is not easy to estimate an accurate state in steady state, but the state estimation in dynamic state is even more
difficult.

= In other words, it is difficult for estimating accurate state in transient state and load following operation in SMRs.
» There are limits to the efficient operation and control of SMRs.

> Itis affecting the safety of SMRs as well.

¢ In other to overcome this problem, Dynamic Data Reconciliation(DDR) is suitable method for estimating the accurate state in
dynamic state by minimizing the uncertainty in physical model.

¢ Final goal of this study is for estimating the accurate state by minimizing the uncertainty of process variables applying the
DDR technique.

¢ Prior to main study, an sensitivity analysis of measurement is performed by applying the DDR technique.

» The system state is continuously changed due to an inaccurate system model, measurement, and uncertainty of system parameters.

» Parameters from real-time acquisition system are accompanying the uncertainty of the measurement due to the insufficient acquisition time.
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Data Reconciliation

+» Data Reconciliation(DR) is widely used the technique to minimize the uncertainty of process variables

¢ The DR is one of the physics model based solution to improve the impoverished quality data.

“Distinguishing Features of

» Estimate the true value - Using Physical Model Constraints }
Data Reconciliation”

Condition: spatial redundancy of instrument in constraint is satisfied

» Reconcile the Uncertainty - Using the Bayesian Update

e . x is Measured Value
Data Reconciliation % is True Value from model

. Vi ' .
4 Least squared Function ) 1S covarlance
.~ o~ ~ R “ Minimize the Random EFrrors”
Measured min(x,y) = (x - )T V(x - %) » ‘b he Gross Error
Value f(x,9%) =0 > FirstPrinciple et.eCtt ¢ ross Error
g(%79)=0 > Empirical Eq “ Estimate the unmeasured Value”

*» DR is suitable for estimating the accurate performance parameter by optimizing the uncertainty and eliminating the
gross error.

*» DR can be applied by different methodologies depending on the usage environment. A

(C\ < Korea Atomic Energy
5 KAERI Research Institute



Study on Virtual Thermometry used in Small Modular Reactor Using Dynamic Data Reconciliation.

Data Reconciliation in Steady State

= \Weight Factor for measurements.
miny) = ) (3 - x)/0?
i=1

= Measurement is described by additive noise model
y=x+v
Where y is a vector of n X 1 and the v is a vector of random error. o, is standard deviation of measurement i
It the measurfement are giyen by Y, o st ikely estimat_e for = To solve the objective function under the constraint.
X can be obtained by Maximum Likelihood(ML) function.
LA,V =G=-NV -9 -22f©)

1 1
L Guelyi) = exp |- 5 0 = 1)V 0 = )"
(2m)m/2|V|1/2 2 “Lagrange Multipliers”

The ML estimation prOblem IS eC]Uivalent to mlnlmlzmg the n TO perform Successive |inearization by approximating a

function. nonlinear constraint with a linear transformation.

min(y) =@y —-N"Vy -9 ;
: . L _ Ty _ oL
subject to f(9) = 0, % =J(4y) A=0 — = f) =0
v) > ) ;
9(3) =0 “Jacobian Matrix”
Where is the V is M x M covariance matrix. The matrix V is using the weight ] ]
_ R _ = Find the Reconciled Value.
matrix for each measurements. The y represent the measured and reconciled
value having the m x 1vector. y=y-VA'(AVA")*4,
FA Korea Atomic Energy

/KAERI Research Institute

Only one set of data at current time is used and used spatial redundancy.
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Dynamic Data Reconciliation

< The Dynamic Data Reconciliation(DDR) is suitable methodology for estimating the accurate state of time dependent parameters.

J/

s DDR is a filtering method for estimating the current state using the data from measurement prior to t to measurement at time t.

*  Inaccurate model

" Xg = ApXp_1+ Bpug_q +H|Wi_q » w~N(0,Q)— -  Uncertainty of model parameters.
» Inaccurate input value

" Vi = Hkxk +vk > U~N(0,R) 4

, ~ ~ N S5 — Estimate the Current State
= minf3) = oWk — IO "R~V Yk = Xt Wik

-1 1
» minf ¥) = Ok |V} R Ve — Vi) + Xx — Vi) E.;,k (XK — Vi)

of _ ~ _ -
" 2Ry (Ve — Vi) — 2Q5 (X — F) = 0 Prediction

" Y= (RM,lk + QS,Ilc) (RM?k Vi + Qs,i xk)
t—! t‘ t+L

—-—————»

X true value of state variables at time t. B: equation of optional control input sampling time

uy: manipulated input H: state equation related measurement yy

w.: system model disturbance Subscript k: time »  Alis representing the system state

Y. measured values Ry,: covariance matrix related measurement ) )

V. Measurement error Q). covariance matrix related system model. » His representing the measurement state.

A : equation of system model 7

» vandw are representing the uncertainty. C7 - Korea Atomic Energy
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Kalman Filter for Dynamic Data Reconciliation.

Predict (Time Update)

*» DDR is estimated by only system model.

Prediction from system model

X, = Ax;_4 + By, + The system model should be calculated by the numerical
= The covariance matrix of system model predictor
= AP;_,AT + Q solution for estimating the accurate state at every time step.
Correct (Measurement Update) « But, kalman filter is updated by reflecting the changed

= Calculate the Kalman Gain(difference with o _
measurement and predictor of system model). weighting factor between measurement and covariance of

K, = PyHT(HP HT ¥R) "

X = X H(Kp(Zyx — Hxy)

system model.

= Update the estimation error of system model.  Kalman filter is more suitable method for estimating accurate
= (I — K H)P;, . :
@ ( kH)P state in dynamic state.
X . apriori estimate. X). a posteriori state estimate.
A : equation of system model. B: equation of optional control input .
u;: manipulated input . Z .. measurement.
H: state equation related measurement  R: measurement error covariance
Q: system model error covariance P, a posteriori estimate error covariance ;A Korea Atomic Energy

P}, a priori estimate error covariance  Subscript k: time (KAEM Research Institute
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Case Study: Thermometry on SMRs

¢ Temperature is one of the importance parameter for representing the plant state..

% Thermometry is a most restricted instrument such as an environment and location of SMRs.
¢ The Resistance Temperature Detector (RTD) and Thermocouple (TC)

» Each of thermometry have opposite characteristics

¢ According to International Electrotechnical Commission (IEC) 60751 and ASTM E644 standards, the specifications of RTD
and TC are below table.

The Graph of Time Constant.

Type  Response time(t) Tolerance /’_

Class A: + (0.15 + 0.002*t)°C

RTD 6 sec 1=63.2%
Class B: = (0.3 + 0.005*t)°C :
Class A: = 1.5°C (or +0.4%) )
TC 2 Sec
Class B: + 2.5°C (or +0.75%)
’ Time, s

“* Which thermometry is more suitable for dynamic state

e
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Case Study: System Model

¢ In this study, the one-dimensional heat conduction
equation was used as the physical model to
demonstrate the DDR.

oT 02T
ot  0x?2
Where T is temperature, t is time, x is length and k is thermal conductivity.

¢ The finite-difference method was applied to calculate
the node-wise temperature distribution

At At At
k+1 _ k _ k k
T; = ksz T;-411 2ksz T;" + ksz T4
- At At T T
_ Bt At k
(1 ZkAx2> ke Ty
k
At k At At T3
A= ke \(17%az)  Tae :
- At At At
ke (“”‘m) A ;
At o, At k
_ o () | [T

+» Reference Data Set

T=0 at x=0, for t>0

T = 45°C for t=0, x>0
k=4.7*E-7 m%/s

r = kAVAX?

Final time is 200sec

+» Virtual Data Set
» Reference data + o, * randn. (o, = 2°C)

Where randn is the normally distributed random numbers

Temperature Gradient
Measured Data

No.Grid
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Temperature Gradient
Numerical Solution

Numerical Solution
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Results(1)

% Result of Case 1. (6, =0.1,06, = 2,6, =0.8 + rand, H = 0.5)

where g is Standard Deviation of System Model, o, is Standard Deviation of Measured Value, a; is Standard deviation with random value following the Gaussian distribution, and H is the
state of measurement.

70

I
© Data Estimated by DDR
+ Measured Data

LS -'-"-:».»g.;..‘,%' — Numerical Solution high uncertainty

= This case is representing the state of measurement having a

" yx = Hypx, + vy

o
L=}

= Case 1 is significantly getting out of the numerical

Temperature, 'C
B
(=]

solution(true value).

30

= |t can not represent an accurate state due to the information of

20

inaccurate measurement.

10 | | | | | | | | |
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Results(2)

< Resultof Case 2. (65, =5,0,=2,0;,=0.84+rand, H=1)

where o is Standard Deviation of System Model, o, is Standard Deviation of Measured Value, a; is Standard deviation with random value following the Gaussian distribution, and H is the
state of measurement.

50 T T T
" ° Data Estimated by DDR = Case 2 is representing the inaccurate system state.
by, + Measured Data
g 4 — Numerical Solution
% " Xp = ApXg-1+ Brup_q + Wi
40 - In] ]
o = |If the accuracy of the system state is decreased, it is difficult
36 -&5 ]
]
m W% .
5 N to estimate the accurate state.
g 30 - Q9 \6\ |
E— @ g \m\g;ﬁ@
o b )
sl of 0% Py 4 4 = when o, becomes larger than a,, the w, (weight of the
o ¥4
af measurement) is increased and the estimation is following the
B measure.
1 0 2|D 4|D E':D E-lﬂ 1 EliD ‘I;.D 14|~D ‘If;D 1 ELD 200
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Results(3)

< Result of Case 3. (65, =0.1,6, = 2,6; =0.8 + rand,H = 1)

where o is Standard Deviation of System Model, o, is Standard Deviation of Measured Value, g; is Standard deviation with random value following the Gaussian distribution, and H is
the state of measurement.

50 T T

T
+ © Data Estimated by DDR

450, + Measured Data ]

— Numerical Solution » The uncertainty of measurements is minimized.

= Estimated measurements by DDR are close to the true value

40

= If the system state is accurate, the estimating state is more and

[}
o
T

more close to the true state.

(=]
(=]
T

= \We should consider what is more accurate.?

Temperature, T

M2
o
T

» lInaccurate measurement Dby system state or Uncertain

20

measurement by response time.?

15

» In other to estimate an accurate state in dynamic state, the

10

dynamic compensation is necessary at every seconds.
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Results(4)

% Result of Regression Analysis on Case 1
= Of course, the dynamic compensation is used for estimating a state

Comparison of Kalman Filter Result.
e T T T

| 0 Data Estimated by DDR .
o + Measured Data N N PPS

4508,

— Numerical Solution

» But, It is used a historical data set in certain period.

40—

= In order to estimate a more accurate state in dynamic, the data closed

to the current state should be used rather than historical data

30—

Temperature, C

25—

= Performed regression analysis using the sampling data within 1

20—

second.

= In case of thermometry, since there is time constant equation, the

' “ “ . e value of accurate state can be estimated by regression analysis.
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Conclusion

% This study is tried to an sensitivity analysis of the thermometry used in SMR by applying a DDR technique.
» Inaccurate system state.

» Uncertain measurement.
¢ According to results, the inaccurate measurement is more reliable than uncertain measurement.
% However, if an uncertain measurement is compensated by regression method, it is more accurate than an inaccurate
measurement.
* Inresult 3, it is possible to estimate an accurate state through DDR.
¢ Further study
= DDR will be performed to estimate the accurate state applying the actual system of the SMR.

» In order to overcome various problems occurred by uncertainty of process variables in SMR.
2
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