
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 19-20, 2022 

 

 

Abnormal State Detection Model Using Deep One-Class Classification in Nuclear Power 

Plant 

 
Seung Gyu Cho, Seung Jun Lee 

Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan, 44911 

Corresponding author: sjlee@unist.ac.kr 

 

1. Introduction 

 
Nuclear power plant (NPP) operators are trained to 

select appropriate operating procedures according to the 

situation and act. For instance, when an abnormal 

situation occurs, the appropriate abnormal procedure 

manual is selected and acted by synthesizing the situation 

such as indicators and alarms in the main control room. 

 However, it is difficult to diagnose a suitable 

abnormal condition. For advanced power reactor1400, a 

Korean nuclear power plant, thousands of indicators and 

82 abnormal procedures which are made up of 224 sub-

procedures cause confusion for well-trained operators. In 

addition, if proper measures are not taken within a 

limited time, operators feel burdened because an 

abnormal state can enter an emergency state that requires 

reactor shutdown [1]. In this respect, human errors may 

occur, and in the case of Korea, about 20% of the 

unexpected reactor trip of nuclear power plants is caused 

by human errors. 

To reduce this human error, previous studies focused 

on diagnosing the type of abnormal state using an 

artificial intelligence model. The performance of 

artificial intelligence models depends on the quality and 

amount of data, and it is difficult to obtain a large amount 

of high-quality abnormal data of NPP. Therefore, 

research that detects an abnormal state only with normal 

state data should be preceded because it's hard to get all 

kinds of the abnormal state data. 

In this study, a deep support vector data description 

(Deep SVDD) artificial intelligence model is introduced 

to determine whether the current state is normal or 

abnormal by using only information of a normal state [2]. 

Deep SVDD aims to find the smallest range surrounding 

normal data according to the feature space of trained 

normal data based on deep learning. As a result, the 

normal state and 15 abnormal states are tested to 

determine whether the state is normal or abnormal. 

 

2. Methods 

 

In this study, Deep SVDD is used as a model for 

training normal data to determine whether it is normal or 

abnormal state. As the test data, a normal state and 15 

abnormal states are used. Deep SVDD uses the distance 

from the feature space as a test score and determines the 

normal and abnormal status according to the value of the 

score. Figure 1 is the overall algorithm for this study. 

 
 
Fig. 1. Overall algorithm of Abnormality detection using 

Deep SVDD 

 

 

2.1 Data Production 

For data production, a 3KEYMASTER nuclear power 

plant simulator from western services corporation was 

used, and the plant model is 2-loop generic pressurized 

water reactor [3]. All data are generated in the middle of 

life state for 60 seconds, and the types are one normal 

state and 15 abnormal states, as shown in Table 1.  

 

Table I: Test data description 

Label Description 

Normal Initial condition #2 MOL* 100% 

SGTL* Steam generator A tube leak 

CHRG* Charging line break upstream 

LTDN* Letdown line leak inside containment 

CDS* Loss of condenser vacuum 

POSRV* Pilot operated safety relief valve leak 

CWS* Circulating water tube leak in LP* condenser 

MSIV* Main steam isolation valve positioner failure 

RCP* CCW* service loop header leak to aux atm 

MSS* Steam generator A steam line 1A break inside 

containment 

PZR* Pressurizer spray valve positioner failure 

CCW CCW service loop header leak to aux atm 

LFH* Feedwater heater 4A tube break 
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HFH* Feedwater header break 

MFW* MFWP recirculating valve positioner open 

failure 

TCS* High pressure turbine control valve positioner 

close failure 

* MOL: middle of life; SGTL: steam generator tube leakage; 

CHRG: charging water system; LTDN: letdown water system; 

CDS: condensate system; POSRV: pilot operated safety relief 

valve; CWS: circulating water system; LP: low pressure; 

MSIV: main steam isolation valve; RCP: reactor coolant 

pump; CCW: component cooling water; MSS: main steam 

system; PZR: pressurizer; LFH: low pressure feedwater 

heater; HFH: high pressure feedwater heater; MFW: main 

feed water; TCS: turbine control system; 

 

 

2.2 Data preprocessing 

Data preprocessing is largely divided into two 

categories. It is parameter selection and normalization to 

be used for training and testing. The parameter selects the 

variable to be used based on the rate of change in the 

steady-state data among the 944 parameters used for the 

human machine interface. The selected parameters 

perform minmax normalization based on the normal state 

data. 

 

𝑋 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (1) 

 

2.3 Descriptions of Deep SVDD 

The existing support vector data description aims to 

find the smallest hypersphere that enclosing feature 

spaces using kernel function [4]. Deep SVDD is also 

looking for the smallest hypersphere surrounding the 

feature space. However, the difference is that deep 

learning-based data reprocessing is performed instead of 

kernel function []. Let 𝜙(𝑥𝑖; 𝑊) represents transformed 

data with data set 𝑥𝑖 ∈ 𝑋,  neural network 𝜙  and 

weight W. The objective function of Deep SVDD is 

defined as 

min
𝑅,𝑊

𝑅2 +
1

𝑣𝑛
∑ max {0, ||𝜙(𝑥𝑖; 𝑊) − 𝑐||

2
− 𝑅2}

𝑛

𝑖=1

+
𝜆

2
∑||𝑊𝑙||

𝐹

2
𝐿

𝑙=1

  (2) 

 

Where c is the center of the hypersphere, R is the 

radius of the hypersphere, and 𝜆  and 𝑣  balancing 

hyperparameter. The simplified objective function of 

Deep SVDD can be defined as follows by removing 

radius of hypersphere. 
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The abnormal detection score of Deep SVDD is 

expressed as the distance between the test data and the 

center of hypersphere. 

 

𝑠(𝑥) = ||𝜙(𝑥; 𝑊) − 𝑐||
2

 (4) 

 

Learning goes through two main courses. First, the 

autoencoder using the bottleneck structure based on 2d 

convolutional natural network (CNN) extracts important 

features of the normal state data by minimizing 

reconstruction error and sets the weights for the center of 

hypersphere [[5], [6]]. 

Second, the weights through the autoencoder are 

applied to Deep SVDD using the same structure as the 

bottleneck part of the autoencoder, and the existing data 

is represented by utilizing the distance between 

hypersphere and normal state data as loss. 

 

2.4 Structures of models 

Basically, the Deep SVDD model exactly matches the 

bottle structure of Autoencoder, and the base model of 

Autoencoder is as follows. 

-Number of 2d convolutional layer for encoder: 2 

-Number of 2d convolutional layer for decoder: 3 

-Activation function of each convolutional layer: 

leaky ReLU 

-Optimizer : Adam (learning rate=0.001) 

 

3. Results 

As described in preprocessing, a total of four types of 

parameter sets were selected according to the rate of 

change in the normal state data, and the number of 

parameters was 142, 238, 332, and 468. Due to the model 

structure of Deep SVDD, 2d CNN should be 

implemented, so the data was converted into 2d 

according to the number of parameters, and the size of 

the insufficient data was added by zero padding. Due to 

the character of one-class classification, the farther the 

distance between the normal state data and the abnormal 

state data is, the better the test result is, so not only the 

accuracy but also the area under curve (AUC) is used. 

Table II: Average AUCs in % with standard deviations per 

parameter numbers of 1 normal and 15 abnormal state data 

Training data Training result 

Param 

Num* 

Data 

size 

Norm 

Acc* 

Abnorm 

Acc* 
AUC* 

142 12×12 100 ± 0 
93.4
± 0.02 

93.6
± 0.02 

238 16×16 100 ± 0 
96.4
± 0.04 

96.5
± 0.04 

332 19×19 100 ± 0 
99.8
± 0.01 

99.8
± 0.01 
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468 22×22 100 ± 0 
99.9
± 0.02 

99.9
± 0.02 

* Param Num: parameter numbers; Norm Acc: normal state 

accuracy; Abnorm Acc: abnormal state accuracy; Total Acc: 

total state accuracy;  

 

From the test results, it may be seen that the data in the 

normal state is accurately determined, and some of the 

data in the abnormal state is determined to be in the 

normal state. In addition, it may be seen that as the 

number of parameters increases, the accuracy of the 

abnormal state increases. Since the extracted general 

characteristics of the normal state data are insufficient to 

cover the main factors of the abnormal state, the accuracy 

is low when the number of parameters is small. For 

example, when RCP abnormality occurs, the accuracy of 

abnormal detection was relatively low. This is because 

there was little difference from the normal state data 

when the change rate of the RCP seal flow rate, which is 

a major variable, was low. 

 

4. Conclusions 

 
This study introduced an artificial intelligent model 

that accurately informs whether the current state is in a 

normal or abnormal state because of the difficulty of 

processing a large amount of high-quality abnormal state 

data according to the characteristics of nuclear power 

plants. Deep SVDD, a one-class classification model that 

built the model utilizing Autoencoder based on 2d CNN, 

was used. Normal state data were used as training data, 

and normal state data and 15 abnormal state data were 

used as test data. Through this study, it was shown by 

testing 15 abnormal states that it is possible to detect 

abnormal states by using only steady state data. 

If an abnormal state detection model is applied to an 

actual power plant, it shows the possibility that operators 

can be notified of the transition to an abnormal state 

faster than an alarm or faster than before. Through this, 

operators' quick perception of abnormal conditions will 

be able to help reduce human errors that may occur due 

to many plant variables and complicated AOPs. 

Furthermore, if this model makes it possible to detect 

more abnormalities, the models for diagnosing the 

abnormalities studied above no longer need to include 

the normal condition in the diagnosis target and may 

show higher accuracy. 
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