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1. Introduction 

 
Voltage control is desirable for voltage stability which 

is the ability of an electrical power system to maintain 
voltages within fixed tolerable ranges at every single bus 
before and after a system disturbance. In the quest of 
achieving the target of net-zero carbon emissions by 
2050, there is a significant uptake of renewable energy 
across the globe [1]. However, most renewable energy 
sources are intermittent in nature. Their power grids fall 
short of the capacity to quickly synchronize and 
compensate for reactive power required by changes in 
dynamic loads, and in addition, they suffer from 
unpredictable voltage and frequency fluctuations. The 
modularity and enhanced safety features of the SMR [2], 
gives it the ability to be connected near load centers and 
in isolated grids due to their load-following capability. 
However, SMR deployed in an isolated grid may 
experience frequent tripping if voltage control is not 
established. Previous studies have shown the application 
of artificial neural networks (ANN) and the impact of 
installation of on load tap-changers (OLTC) on voltage 
control of base-load power plants connected to an 
unstable grid via an infinite bus [3]. Voltage control 
through the main transformer OLTC requires an accurate 
method with a multi-factor consideration approach. In 
this case, Artificial Intelligence (AI), through machine-
learning by the recurrent neural networks (RNN) 
modelling, was applied for tap-changer setting control to 
achieve voltage stability in a peak-load power plant 
connected to the grid through a finite bus.  

 
2. Methods and Results 

 
   In this section the Korea’s System-integrated 
Advanced ReacTor (SMART) SMR-107MWe which has 
an approved design [1] was selected as a representative 
of SMR technologies with load-following capability that 
can be deployed in similar scenarios.  

 
2.1 Electrical Power System Configuration for SMR 
 

The main and auxiliary power system configuration 
was optimally modelled with voltage control being 
implemented through the main transformer OLTC.  
The power system design was made such that the major 
equipment and buses conform to the requisite standard 
for preferred power supply (PPS) [4]. The proposed 
configuration is as shown by the schematic power system 
illustrated in Fig. 1. The switchyard voltage level of 
154kV was selected from standard transmission voltages 
in the Korean grid code. This will be used in the 

simulation as representative of any transmission voltage 
levels across the globe that can be linked to other 
renewable energy sources.  

 
Fig. 1. Proposed SMART SMR system configuration  

 
   The designed SMART SMR model power system 
comprises of two main transformers (with OLTC) meant 
to step up generation voltage from 13.8kV to 154kV. The 
two transformers provide the paths for the preferred 
power supply transformation. Redundancy was achieved 
such that either of the transformers can be used 
interchangeably by an automated switching operation. 
The auxiliary power system is composed of two 
13.8kV/4.16 kV transformers that operate in parallel and 
hence provide for redundancy in the medium voltage 
level. The low voltage network is further divided into 
important to safety and non-safety buses which are also 
interlinked to provide multiple backup configurations for 
voltage stability and defense in depth for the system. The 
emergency diesel generator is on the low voltage level 
where safety related loads are connected. 
 
2.2 Recurrent Neural Networks 

 
   This is a deep learning algorithm tailored to deal with 
sequential data. This features makes it good for learning 
and prediction. The advanced RNN variant used in this 
study is the long short term memory (LSTM) which has 
gates that regulate the flow of information. Forget 
gate decides how much of the previous data will be 
forgotten and how much will be used in next steps. The 
result of this gate is typically in the range of 0-1 where 
"0" forgets the previous data, and “1" uses the previous 
data. The input gate works as an input to the cell state 
while the output gate contains information on previous 
inputs and is used for prediction. 
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Fig. 2. shows the structure of an advanced RNN module 
(LSTM).  

 
Fig. 2. LSTM Model of RNN       
                                                    

2.3 Recurrent Neural Network Modelling 
 
   The model was made using an advanced RNN model 
(LSTM). Root mean square error (RMSE) was used as 
the evaluation metrics. Fig. 3. shows the flowchart 
diagram of the prediction model. 

       
Fig. 3. Prediction Model Flowchart 

 
2.4 SMR Main transformer OLTC Control  

 
   The OLTC is conventionally designed to keep the 
voltage on the secondary side of a transformer within a 
preset range. It is a motor driven mechanism that adjusts 
the transfer ratio of voltages according to the preset 
values. The voltage control desired in SMART SMR 
integrated in an isolated gird is that which takes care of 
the generator bus and the grid with special consideration 
on the dynamic active and reactive power components in 
the system. Therefore, accurate reference voltage must 

be selected in order to mitigate voltage excursions due to 
various factors including change in loading and other 
system disturbances. Modelling of the renewable energy 
grid under study was done on the standard IEEE 5 bus 
system with consideration of the IEEE 1547-2018 [5], 
standard which provides for the range of overvoltage 
(1.10) p.u and undervoltage of 0.88 p.u for the case of 
renewable energy integrated to the grid. Fig. 4. shows a 
typical layout of an advanced tap-changer configuration. 
 

     Fig. 4. Advanced OLTC tap-changer configuration 
 
2.5 Optimal OLTC Control Method Selection 
 
   The control method is selected by comparative analysis 
of the percentage tap settings obtained from the 
prediction by RNN and the electrical transient analyzer 
program (ETAP) load flow analysis. An RNN model was 
build based on simulation data with percentage tap 
settings as the target and the training features included 
active power, reactive power and grid voltage assuming 
a finite bus. The model mimics the daily loading 
dynamics by varying the load and the renewable energy 
sources (RES) generation contribution with the 
assumption of renewable energy providing only the 
active power. This was done with reference to the 
generator reactive power capability curve which 
provides for operation between p.f 0.85 lagging to 0.90 
leading in order to safeguard the generator from heating 
and mal-operation beyond its rated limits. Sampled 
simulation data was as shown in Table I. 
 
Table I: Voltage Control when Connected to a Finite Bus 
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   Table I shows the contribution of RES and SMR in 
meeting the grid demand as the load changes by various 
percentages. The values of grid voltage before and after 
OLTC action are also shown alongside the percentage 
tap settings. The table also shows the intermittent nature 
of RES. Fig. 5. shows the effective voltage control by the 
OLTC. The voltages were initially operating beyond the 
stability limit of ±5%. However, the action of the tap- 
changer corrected the voltages to operate near unit p.u 
values where stability is high. The effective tap setting 
per load change with time is as shown in Fig. 6. 
 

   Fig. 5. Effective voltage p.u. control by OLTC action 
 

 
   Fig. 6. Percentage tap settings with change in demand 
 
   Fig. 7. shows the load following operation of the SMR. 
The RES provides only active power and does not 
perform any load following operation. The SMR meets 
the full load demand whenever the RES goes zero power 
output like in the evening for the case of photovoltaic 
cells. 

 
   Fig. 7. Load profile showing SMR load following operation 
 

The RNN model was built using the LSTM configuration 
as shown in Fig. 8. 

 
Fig. 8. RNN training and prediction model summary 

 
   Fig. 9. shows the peformance evaluation of the trained 
RNN model to acertain the applicabilty of the model in 
robust percentage tap-settings predictions.The mean 
absolute error (MAE), mean square error (MSE), and the 
RMSE were used as the metrics for evaluation. 

Fig. 9. Performance evaluation of the trained model 
 
   The model was then used for prediction of percentage 
tap settings for a similar data set with the ETAP software 
that had the upper band and lower band setting of  0.3125 
percent , and increamental tap step of 0.625 percent in 
order to draw a comparison between the two methods. 
The RNN model prediction results superimposed on the 
ETAP plot, exhibiting similarities as shown in Fig. 10. 

 

 
Fig. 10. RNN predictions compared to ETAP %tap settings 
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    In the case of finite bus, voltage control was achieved 
by tap-changer action and reactive power compensation 
so as to maintain steady grid voltages with varying 
demand. The target data was obtained from simulations 
since it was impossible to carry out a practical 
experiments for this study. The modelled renewable 
energy grid bus voltage was used as reference for the 
simulations of tap-changer response.  
   When the load in a power system was increased, the 
voltage decreased and vice-versa. Reactive power 
demand indirectly results in alteration of the excitation 
winding of the generator which has limits of operations 
within the defined generator D-curve. Installation of on 
load tap-changing transformers takes care of coarse 
voltage deviations. More so, optimal power flow 
calculations can be employed to define voltage for all 
regions in the system. The use of RNN was found to be 
a precise method for OLTC control to mitigate voltage 
challenges of high renewable energy penetration in the 
isolated grids. Upon comparison, the RNN percentage 
tap-settings superimposed on the ETAP OLTC tap-
settings showing the degree of accuracy in prediction as 
shown in Fig.10. 
 
 

3. Conclusion 
 

   This paper recommends the adoption of the Artificial 
Intelligence based recurrent neural network for the 
OLTC control method in SMR for a fine and seamless 
integration to isolated grids with high renewable energy. 
Load following capability of SMR was assumed as 
required. The OLTC control method was able to 
demonstrate the ability to mitigate voltage excursions in 
a finite bus by providing steady percentage tap-changer 
settings using a number of parameters that include active 
power, reactive power, and voltage components as 
opposed to conventional OLTC control that checks the 
reference voltage magnitudes only. This addressed the 
issues of voltage instability in high renewable energy 
isolated grids.  
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