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1. Introduction 

 
The importance of computational fluid dynamics 

(CFD) for thermal-hydraulic analysis continues to grow 

in the nuclear industry. Despite rapid advancements in 

the performance of central processing units (CPUs), the 

computational cost of CFD remains unrealistic in many 

cases. This is especially true for turbulent or reacting 

flows with grid and timestep in scales less than a 

millimeter and a millisecond, respectively. Tolias et al. 

identified that approximately 10–100 h of CPU time per 

second of physical time was required to simulate 

unsteady hydrogen deflagration based on a domain size 

of 20.0×14.4×12.0 m [1]. In terms of their commercial 

application to the nuclear industry, these costly 

simulations are impractical, given that hour-based 

accident analysis is required in the regulatory guide [2].  

To reduce computational cost, this work focuses on 

the application of machine learning techniques, which 

are in the forefront as the most innovative technology [3]. 

As Vinuesa et al. noted [4], one of the main objectives of 

recent machine learning studies in fluid mechanics is to 

accelerate CFD simulations. Although the application of 

convolutional layers in flow field predictions has been 

studied, the need to develop a unique network design 

fitted for CFD has emerged. Notably, the convolutional 

neural networks (CNNs) specialized in general image 

processing require many images to train the parameters 

inside the kernels [5]. Recently, Jeon et al. developed a 

neural network model introducing the finite volume 

method with a unique network architecture. The finite 

volume method network (FVMN), considering the 

nature of the CFD flow field where the identical 

governing equations are applied to all grid points, can 

predict the future fields with only two previous fields. 

However, the numerical algorithm of FVM for 

handling governing equations is difficult to be 

implemented sufficiently into the network design only by 

the proposed input/output system. In this paper, we 

introduced a physics-informed loss function calculating 

the balance of each governing equation by summation of 

physical fluxes, to the network to enhance the network 

prediction accuracy. Additionally, a cross-coupling 

strategy of machine learning and CFD using the physics-

informed loss function was proposed to overcome the 

long-term prediction limitation of data-driven 

approaches. TensorFlow, an open-source machine 

learning software, was used to develop the network 

model. 

 

2. Physics-Informed Machine Learning 

 

2.1 Physics-Informed Loss Function 

 

Recently, the FVMN model was developed to 

accelerate unsteady CFD simulations by introducing the 

FVM principles in the network design, as shown in Fig. 

1(a) [6]. The basic procedure is similar to that of previous 

multi-layer perceptron (MLP), but the developed 

network model employs tier-input and derivative-output 

systems. The CFD time series fields at times t and (t+1) 

are used as input and output variables in the training 

process, respectively. It should be noted that, considering 

the nature of the CFD flow field where the identical 

governing equations are applied to all grid points, the 

grid-based training approach was adopted in this network 

design. This approach bears a strong advantage over 

CNNs’ image-based training approach in terms of 

accelerating unsteady CFD simulations. More details on 

the FVMN model can be found in Ref. [6]. 

The loss function in the previous network (Fig. 1(a)) 

is defined based on the mean square error (MSE) 

between the predicted value and ground truth value as 

shown Eq. (1). Note that 80% of the total grid points 

(14,400) were used for the training loss and 20% (3,600) 

were used for the validation loss for checkpoints. 

 
𝐿 = 𝐿𝑚𝑠𝑒 =

1

𝑛
∑ (𝑍𝑘 − 𝑍𝑘(𝜃))2𝑛

𝑘=1    (1) 

 

On the contrary, Fig. 1(b) shows the newly developed 

FVMN model design with a physics-informed loss 

function as shown Eq. (2). The residual 𝜀𝑗
𝑘 for each grid 

𝑘 and each governing equation 𝑗 is iteratively calculated 

to optimize the parameters in the mini-batch. In other 

words, The residual is calculated by the summation of 

physical fluxes of each governing equation, continuity 

and the Navier-Stokes equation (x-momentum and y-

momentum). 
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 Because all variables (𝑝, 𝑢, 𝑣) were predicted in the 

unified framework to compute the residuals during 

network training, the MSE loss function also summed 

squared error of each grid 𝑘 and each variable 𝑖. 𝑤1 and 

𝑤2  are weighting factors to adjust the scale of each 

governing equation ( 𝑤1 = 1, 𝑤2 = 0.5  in this study). 

Additionally, the continuity residual was scaled by 1/10 

to consider the residual of the continuity and the Navier-
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Stokes equation together. The residuals of 100 % grid 

points were averaged and used for training loss 𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 .. 

Although the total loss function including 𝐿𝑚𝑠𝑒  has a 

supervised manner, 𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  can be utilized as an 

unsupervised monitoring function in the prediction 

dataset. In MSE function, same as network (a) 80% of 

the total grid points was used for the training loss and 20% 

was used for the validation loss for checkpoints.  

 

 
 

Fig. 1. FVMN model with (a) MSE loss function. (b) physics-

informed loss function.  

 

2.2 Laminar Flow Dataset 

 

To investigate the efficacy of the physics-informed 

loss function, a 2D incompressible counterflow dataset 

was generated by the OpenFOAM code. The 

OpenFOAM solver was icoFoam, which is transient 

solver for incompressible laminar flow of Newtonian 

fluids (Eqs. (3) and (4)). The geometry of the simulation 

was a simple rectangle as shown in Fig. 2(a). The mesh 

was constructed by 20,000 hexahedral cells. Through the 

overall same mesh quality, the maximum non-

orthogonality was 0 and maximum skewness was 6.66e-

14. The inlet 1 located at the middle of left wall was 

assigned to 2 m/s of positive x-axis velocity (𝑢) and 1 

m/s of negative x-axis velocity in inlet 2 (nonsymmetric 

inlet condition). As the working fluid, a virtual fluid with 

a kinematic viscosity of 0.01𝑚2/𝑠 was modelled. The 

simulation time was 4 seconds, and each timestep was 

equally controlled as 0.01 s. 

 
∇ ∙ 𝑢 = 0     (3) 

 
𝑑(𝑢)

𝑑𝑡
+ 𝛻 ∙ (𝑢⨂𝑢) − 𝛻 ∙ (𝜈𝛻𝑢) = −𝛻𝑝   (4) 

 

Fig. 2(b) shows pressure and velocity fields according 

to time transient; 𝑝  represents pressure field, 𝑢  and 𝑣 

each represents the x-velocity and y-velocity. Because 

the velocity of inlet 1 was twice than velocity of inlet 2, 

this counterflow showed biased results from left side to 

the right side and y-velocity showed symmetric value 

along central axis (𝑦 = 0). The 1.00-1.11 s timeseries 

dataset, which was one of the most unsteady phases, was 

used for network performance evaluation. The input and 

output variables for the FVMN were extracted from the 

ML domain (𝑛 = 180 × 100). 

 

 
 

Fig. 2. Laminar flow CFD dataset from the counterflow 

simulation. (a) computational domain and boundary conditions 

with nonslip walls. (b) time series until formation of stabilized 

counterflow. 

 

2.3 Efficacy of Physics-Informed Loss Function 

 

We investigated the efficacy of the physics-informed 

loss function by comparing the performance of network 

(a) and (b). A single time series was used for network 

training and 10 time series data were used for 

performance evaluation. More specifically, the 

training/validation dataset was 80/20% of the 1.00–1.01 

s time series data and test dataset (prediction dataset) was 

the 1.01-1.11 s time series data. The hyperparameters 

were optimized by identical manner in Ref. [6]: 2 hidden 

layers, 64 node/layer, mean square error (MSE) and 

ReLU function. The training process was terminated 

when each loss function converged.  

Fig. 3 compares the converged value of each loss 

between cases. Network (a)-double training data is the 

identical network condition as network (a), but the 

training dataset size is doubled (1.00-1.02 s). When the 

residual term was included in the loss function (network 

(b)), the total residual converged to a lower value without 

compromising the training/validation error. Intriguingly, 

the magnitude of the residual was even smaller than 

network(a)-double which was trained by the double 

dataset size. It means that providing the governing 

equation information in the loss function can increase 

network performance as much as increasing the amount 

of training data. Although the training/validation losses 

in the training dataset did not have significant difference 

in all cases, the reduced residual can affect the accuracy 

of the test dataset (1.01-1.11 s). 

 

 
 

Fig. 3.  Comparison of each loss according to the network 

model (logscale). When the residual term was included in the 

loss function (network (b)), the total residual converged to a 

lower value without compromising the training/validation error. 
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Fig. 4(left) shows the variation of network accuracy in 

the test dataset (1.01-1.11 s time series). Because the 

ground truth velocity values of some fields are close to 

zero, the network accuracy was compared based on the 

absolute error. First, the maximum absolute error of each 

variable gradually increased with timestep. In network 

(a), the 𝑢-maximum error of about 0.03 m/s in the last 

timestep was an error of 1% based on the maximum 

velocity in the domain. Considering that the network 

predicted a dataset 10 times the training dataset, the 

FVMN shows good agreement with the ground truth data. 

In network (b), the 𝑢-maximum error of about 0.015 m/s 

in the last timestep was about half of the error in network 

(a). Although the 𝑝-maximum error (Pa) increased as 

compared to network (a), the overall accuracy was 

improved by the physics-informed loss function. 

Fig. 4(right) shows the variation of residuals of the 

governing equations such as continuity and Navier-

Stokes equation. The residuals can be calculated in an 

unsupervised manner without a ground truth data. 

Interestingly, the trained network (b) considering the 

physical flux balance in training process always showed 

a lower residual value than network (a) for the test 

dataset. Especially, the residual in the Navier-Stokes 

equation (momentum balance equation) where all 

variables were included in the equation showed a 

significant difference. We concluded that the physics-

loss function can prevent the non-physical overfitting 

problem where the network was trained to reduce the 

difference between the predicted value and ground truth 

while ignoring the physical flux balance. For this reason, 

the 𝑝-maximum error in network (b) was slightly larger 

than the u-maximum error in network (a), but it was 

reversed by a large difference (Fig. 14(left)). In general 

CFD simulations, an elevated residual value can reduce 

the reliability of simulation results. The reduction of 

residuals contributed to the improvement of the multistep 

time series prediction accuracy, but it seems not a 

remarkable improvement due to the sensitivity for each 

variable. 

More importantly, in both networks the residuals 

increased with time and the maximum error increased 

accordingly. Without CFD ground truth, we can estimate 

the network accuracy trend over timestep by calculating 

the residual in an unsupervised manner. Additionally, 

CFD field prediction for longer time series may be 

feasible if we can prevent the increase of the residual 

with timestep. This applicability of the physics-informed 

loss function provides the feasibility of the ML-CFD 

cross coupling strategy in the next section. Consequently, 

two intriguing scientific observations were clarified in 

this section: (1) the physic-informed loss function can 

prevent non-physical overfitting problem and ultimately 

reduces the error in test dataset (2) observing the 

calculated residuals in an unsupervised manner can 

indirectly monitor the network accuracy. 

 

 
Fig. 4. Variation of maximum absolute error of each variable 

(left) and calculated residual of each governing equation 

(continuity and the Navier-Stokes equation) in ML prediction 

time series (right, logscale). 

 

 

3. Strategy to Couple ML and CFD 

 

3.1 Computational Framework with OpenFOAM 

 

Our hypothesis is that continuous CFD time-series 

predictions are possible if the parameters in the network 

model are periodically updated with the latest CFD time-

series data. In this study, a cross-coupling strategy was 

proposed and verified based on this novel concept. As 

shown Fig. 5, the CFD calculation for a single step is 

initially conducted by solving the first-principles. The 

number of time steps included in the training dataset may 

depend on the complexity of each simulation. In the next 

step, the calculated CFD time-series data are used to train 

the constructed neural networks to determine the model 

parameters. The trained networks can then quickly 

predict the multi-step CFD data without having to 

perform a costly simulation. The ML calculation reverts 

to the CFD calculation when the residual of the predicted 

time series reaches the tolerance level. The residual 

represents the size of the conservation error in the 

governing equations.  

 

 
 

Fig. 5. Concept of the ML-CFD cross coupling framework 

accompanied by periodic parameter updates through the 

physics-informed loss function. Notably. the computation time 

of machine learning for one timestep 𝑡𝑀𝐿 is much smaller than 

that of CFD 𝑡𝐶𝐹𝐷  (about 10 times faster in the 500,000 grid 

condition). 

 

This method seems feasible because an acceptable 

residual range exists even in conventional CFD 

simulations. Reducing the conservation error below the 

allowable range again, the intermediate CFD simulation 

calculates the variable fields of the next timestep. These 

latest CFD results are used as training dataset to update 

the neural-network parameters. The evolved neural 

networks again accelerate the CFD simulation by 
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calculating the multistep data; this process is repeated 

until the calculation is completed. The key advantage of 

this cross-coupling strategy is that it can be applied 

individually to each simulation. Although some network 

optimization is required depending on the simulation 

complexity, network training using numerous simulation 

results is completely unnecessary.  

 

3.2 Feasibility of Long-Term Prediction 

 

Fig. 6(left) shows the efficacy of the intermediate 

CFD simulation in the cross-coupling strategy Before 

entering the second CFD zone, the maximum absolute 

errors in the ML and the ML-CFD cases were the same. 

The entry point was assumed to be 1.06 s when the 

residual scale changed to 10−6 . Because the strategy 

monitored residuals of each ML time series. this entry 

point may change depending on the tolerance setting. 

Notably, the increased error started to diminish as the 

computation enters the CFD zone. As about three time 

series were calculated by the first principles, the error 

values were converged to the initial ML time series error 

level. As shown in Fig. 6 (right), the residual increased 

at the first timestep after entering the CFD simulation 

zone, but then effectively returned to the initial range 

(10−7). 

We conclude that the error-recovery effect was 

obtained by adjusting residuals of the mass and 

momentum conservation equations. For time-series data 

after 1.06 s, the suggested strategy showed much higher 

accuracy than the single-training approach. Because the 

error with the ground truth did not diverge in the 

unsteady simulation, the cross-coupling strategy can 

achieve partial acceleration in the ML prediction zone.  

 

 
Fig. 6. Comparison of maximum absolute error of each variable 

(left) and calculated residual of each governing equation (right) 

in ML and ML-CFD time series. As the residual of the Navier-

Stokes equations was stabilized by the intermediate CFD 

simulation, the error-recovery effect was observed. 

 

3.3 Acceleration Performance 

 

At the 20,000 grid points condition, the average times 

for ML and CFD calculations were 0.012 and 0.033 s, 

respectively. In the case with 500,000 grid points with 

the same boundary/initial condition, the average times 

for ML and CFD calculations were 0.035 and 0.55 s, 

respectively. In this case, the ML can compute the CFD 

time series 15 times faster. Finally, about 2.0 times 

acceleration effect was certificated in the assumed 1:1 

ML-CFD cross computation condition considering the 

parameter-updating time. The CPU and GPU systems are 

an Intel Xenon Gold (56 cores/112 threads) 6258R 

Processor (2.70 GHz) and an NVIDIA TESLA A100 

(CUDA core, 40GB MEM), respectively.  

 

4. Conclusions 

 

In this study, a laminar-flow CFD dataset was used to 

investigate the feasibility of the proposed ML-based 

strategy for CFD acceleration. The developed physics-

informed loss function can not only increase the accuracy, 

but also play the role of accuracy-monitoring function. 

Because it was a relatively simple simulation which does 

not include turbulence or reaction models, the original 

CFD simulation was already fast. In calculations where 

the nonlinearity of the governing equations is more 

prominent, the CFD simulation time will raise sharply 

compared to the parameter-updating time and the 

computation time in machine-learning frameworks. In 

other words, the acceleration performance of this 

strategy will be greater for turbulent- or reacting-flow 

CFD problems. Observing the variation in acceleration 

performance according to the CFD complexity is our 

future work.  
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