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1. Introduction 

 
Nuclear power plants (NPPs) consist of numerous 

components and pipes, and many welding processes are 
performed to connect them. As NPPs age, there are 
many reports of reactor coolant leaks due to cracks 
occurring in these welding areas. This is due to the 
occurrence of primary water stress corrosion cracking 
(PWSCC). It is known that such PWSCC occurs when 
1) sensitive material, 2) corrosive environment, and 3) 
residual stress exist simultaneously. NPPs satisfy all of 
the above conditions for the following reasons. First, an 
Inconel-based welding material called Alloy 82 or 
Alloy 182 was commonly used for the cracked welding 
areas [1]. These welding materials are known to be 
sensitive materials. Second, NPPs are corrosive 
according to the extreme environment of high 
temperature, high pressure, and high radiation. Finally, 
welding residual stress is generated according to the 
local heating and cooling that occurs during welding; 
here, residual stress is evaluated as a very important 
factor that causes PWSCC when it is difficult to 
improve the material corrosiveness of components and 
the environment under the operating conditions of NPPs. 

In general, residual stress is evaluated for a reliable 
evaluation of the structural integrity of welded parts of 
NPPs; that is, residual stress evaluation is performed to 
evaluate fitness-for-service (FFS) [2]. There are several 
methods for evaluating residual stress. The residual 
stress evaluation methods are largely divided into 1) 
local destructive technology, 2) non-destructive 
technology, and 3) finite element analysis. First, the 
local destructive technique includes hole drilling, 
sectioning, contour method, etc. Second, the non-
destructive technique includes x-ray diffraction, neutron 
diffraction, ultrasonic technique, etc. The previous two 
residual stress evaluation methods have disadvantages 
such as large dispersion of measured values, space 
constraints, surface-oriented measurement, and 
relatively excessive time and cost. Finally, the finite 
element analysis method is a technique to evaluate the 
residual stress numerically, unlike the previous methods. 
The finite element analysis method is being actively 
applied to derive the welding residual stress distribution 
in terms of FFS evaluation because of the shortcomings 
of the previous two methods. Nevertheless, the finite 
element analysis method is technically and 
computationally difficult. Also, there are limitations in 
that simplification and idealization of shapes, material 
behavior, and process parameter is inevitable. 

Therefore, in this paper, unlike the existing methods, 
we try to predict the welding residual stress using 
artificial intelligence (AI) technology, which has 
recently been in the spotlight with the advent of the 4th 
industrial revolution. Specifically, the prediction of 
welding residual stress is attempted using a deep fuzzy 
neural networks (DFNN) where the rule-dropout 
technique is applied. ABAQUS, a finite element 
analysis code, was used to build data for AI training; 
here, for modeling, 1) the shape of the pipeline, 2) the 
welding heat input, 3) the yield strength of the welding 
base material, and 4) the constraint of the end of the 
pipeline were considered. As a result, 6300 welding 
residual stress data were obtained from 150 analysis 
conditions. The rule-dropout technique and genetic 
algorithm were applied to optimize the welding residual 
stress prediction model. A root mean square (RMS) 
error and relative error were used to evaluate the 
performance. 
 
2. Deep Fuzzy Neural Networks with Rule-Dropout 

 
This section describes the DFNN with rule-dropout 

method used to develop the welding residual stress 
prediction model. In addition, the genetic algorithm and 
rule-dropout technique used to optimize the welding 
residual stress prediction model is explained. 

  
2.1 Deep Fuzzy Neural Network 

 
The DFNN method is an extension of the fuzzy 

neural networks (FNN) method. In general, deep 
learning has the effect of improving performance as the 
number of layers increases; here, the DFNN method 
treats the FNN as one layer. In other words, 
performance improvement can be induced by 
configuring and deploying the FNN as a single module. 

The FNN method can be described as a combination 
of fuzzy inference and artificial neural networks. Fuzzy 
inference is the process of mapping a given input to an 
output using fuzzy set theory. In this paper, a Gaussian 
membership function is used to construct a fuzzy set. 
The Gaussian membership function is expressed as Eq. 
(1); here, it is important to optimize the parameters cij 
and sij that determine the distribution of Gaussian 
membership [3]. 
 

2 2( ( ) ) /2( ( )) j ij ijx k c s

ij jx k eϕ − −=  (1) 

Once the Gaussian membership function is 
determined, the inputs are assigned according to the 
fuzzy set. After that, the training proceeds by 
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calculating the weights using the artificial neural 
network structure. 

Fig. 1 shows the structure of the FNN method, which 
consists of six layers. The layer related to fuzzy 
inference described earlier is the second layer. After 
that, the third to fifth layers simulate the artificial neural 
network structure. 
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 Fig. 1. The structure of FNN method (FNN module). 

 
The DFNN method is constructed by deeply 

deploying this FNN method as one module. Fig. 2 
shows the structure of the DFNN method, characterized 
in that the results of previous FNN module are input to 
the directly connected next FNN module. 

 

1x

2x

mx

1mx −
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Fig. 2. The structure of DFNN method. 

 
The performance of the DFNN method is closely 

related to the structure of the DFNN method. Since the 
DFNN method is a combination of fuzzy inference and 
artificial neural networks, each feature can determine its 
performance. For fuzzy inference, this is the Gaussian 
membership function and fuzzy rules. In the case of 
artificial neural networks, the number of FNN modules 
corresponds to this. 

 
2.2 Optimization technique of DFNN method 

 

The optimization of the DFNN method includes a 
genetic algorithm for parameter optimization and a rule-
dropout technique for training optimization. 

The genetic algorithm is responsible for optimizing 
the parameters that determine the performance of the 
DFNN with rule-dropout method. The genetic 
algorithm is the process of finding the optimal 
parameter by selecting, crossing, and mutating the 
candidate groups of each variable in general. In the 
DFNN method, the genetic algorithm optimizes for 1) 
Gaussian membership function (cij and sij), 2) fuzzy rule 
number, and 3) FNN module number. 

The rule-dropout technique applied to the DFNN 
method is similar to the dropout technique commonly 
used in deep learning [4]. The purpose of applying the 
rule-dropout technique is to prevent overfitting 
problems that may occur during AI training. The 
overfitting problem means that the performance on the 
training data used for AI training is high, but the 
performance on the test data used for AI evaluation is 
low; that is, it suggests that the generalization 
performance of AI is lowered. The rule-dropout 
technique adjusts the number of network nodes that 
affect fuzzy inference performance to optimize training. 
Specifically, it prevents over-adaptation of neurons by 
artificially disabling the number of nodes in the layer 
that exists between the input layer and the output layer. 

In general, DFNN methods tend to improve in 
performance as the number of FNN modules and fuzzy 
rules increases. On the other hand, as the network 
structure becomes more complex, there is a risk of 
overfitting. The rule-dropout technique receives 
inactive node candidates determined from the genetic 
algorithm and deactivates some of the nodes in the 
initially configured network. This process is repeated 
whenever an FNN module is added, and the optimal 
number of fuzzy rules is determined. Because of this 
optimization process, each FNN module has the same 
or different optimal number of fuzzy rules. In other 
words, the genetic algorithm and rule-dropout technique 
are combined to optimize the number of fuzzy rules. 
The rule-dropout technique helps prevent overfitting by 
disabling some nodes in a complex network structure. 
 

3. Data Acquisition 
 

In this section, ABAQUS, a finite element analysis 
code, was used for data acquisition. In addition, 150 
analysis conditions were utilized to build a database of 
welding residual stress from various welding conditions. 
The 6300 constructed data is divided into training, 
verification, and testing data for AI training and 
assessment. 

 
3.1 Finite Element Analysis 

 
ABAQUS, a finite element analysis code, was used 

to obtain welding residual stress data [5]. A dissimilar 
weld joint between the nozzle and the pipe was 
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simulated for ABAQUS modeling. For the detailed 
material structure, SA508 ferritic steel and TP316 
austenitic stainless steel were applied to the nozzle and 
pipe, respectively. In addition, Alloy 82 and Alloy 182 
were used as welding base materials for the weld joint 
between the nozzle and the pipe. The detailed modeling 
structure is expressed in Fig. 3. 

 
Alloy 82/182

SA508STS316

Ro RN

Buttering

Center path

Inside path
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Fig. 3. Welding part of dissimilar metals and estimation paths 
in welding area for data acquisition [5]. 
 

The following parameters were selected to simulate 
material behavior; the parameters are 1) shape of the 
pipeline, 2) end section constraint, 3) welding heat input, 
and 4) yield stress of weld metal. Table I shows the 
conditions for each parameter. 
 

Table I: Conditions for analyzing welding residual stress 

Shape of the 
pipeline 

Ro (mm) RN (mm) Ro/t 

205.6 300.10 4.8778 

205.6 271.75 6.8763 

205.6 256.80 8.8735 
End section 
constraint 

Restrained Free 

Welding 
heat input, 

H (kJ/s) 

Pass 1 others 

0.49764 1.2690 

0.55985 1.4277 

0.62205 1.5863 

0.68426 1.7449 

0.74646 1.9036 

Yield stress 
of weld 
metal, 

σys (MPa) 

192.33 
203.06 
213.70 
224.38 
235.07 

 
3.2 Data Composition for AI training 

 
According to the previous material behavior 

conditions, 150 analysis conditions were applied using 
ABAQUS. In addition, a total of 6300 datasets were 
obtained using these analysis conditions. The obtained 
data is used for training and evaluation of the AI model. 
The detailed data composition is shown in Table Ⅱ. 

Earlier, it was mentioned that simplification and 
idealization of shape are inevitable in finite element 
analysis. However, this paper focused on the prediction 
of welding residual stress using the DFNN with rule-
dropout method. It is assumed that the obtained finite 
element analysis results are accurate. 

According to each condition, 1250 training data, 260 
validation data, and 65 test data are divided. The 
training data is used to train the DFNN model, and the 
validation data is used to check whether the training is 
working well (overfitting evaluation). In general, 
training and validation data are collectively defined as 
development data. The test data is used to evaluate the 
performance of DFNN model developed as data 
independent of these development data. 

 

Table Ⅱ: Data composition according to each condition 

Path 
End 

section 
constraint 

Data type 
No. of 
data 
point 

Inside 
path 

Restrained 
Train 1,250 

Validation 260 
Test 65 

Free 
Train 1,250 

Validation 260 
Test 65 

Center 
path 

Restrained 
Train 1,250 

Validation 260 
Test 65 

Free 
Train 1,250 

Validation 260 
Test 65 

No. of total data point 6,300 
 

4. Evaluation Result of Residual Stress 
 

The results of the welding residual stress prediction 
model developed using the DFNN with rule-dropout 
method were evaluated using the RMS error and the 
maximum relative error. The performance of the DFNN 
model according to the estimation paths (inside path 
and center path) is shown in Tables Ⅲ and Ⅳ, 
respectively. When the end section constraint condition 
in the inside path is restrained, the result evaluated with 
the test data has an RMS error of 1.004%. When the 
end section constraint condition is free, the result 
evaluated with test data shows the RMS error of 
1.736%. The evaluation result of the center path is 
1.041% and 0.537% as a result of evaluation with test 
data when the end section constraint conditions are 
restrained and free, respectively. Overall, the DFNN 
model developed by showing the RMS error within 2% 
is judged to be sufficient for evaluating the welding 
residual stress. 
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Table Ⅲ: Performance of the DFNN with rule-dropout 
model (inside path) 

End 
section 

constraint 
Data type 

RMS 
error 
(%) 

Relative 
max. 
error 
(%) 

Restrained 

Train 0.808 4.958 

Validation 0.888 3.680 

Test 1.004 3.455 

Free 

Train 1.807 8.803 

Validation 1.967 8.900 

Test 1.736 7.469 
 

Table Ⅳ: Performance of the DFNN with rule-dropout 
model (center path) 

End 
section 

constraint 
Data type 

RMS 
error 
(%) 

Relative 
max. 
error 
(%) 

Restrained 

Train 0.682 3.115 
Validation 0.744 3.394 

Test 1.041 3.940 

Free 

Train 0.417 2.007 

Validation 0.454 2.178 

Test 0.537 2.028 
 
Figs. 4-6 shows the results of plotting the actual (blue 

‘o’ mark) and predicted (red ‘x’ mark) values under the 
center path and free conditions. 
 

 
 

Fig. 4. Performance evaluation result of DFNN with rule-
dropout model based on shape of the pipeline. 

 

 
 

Fig. 5. Performance evaluation result of DFNN with rule-
dropout model based on welding heat input. 
 

 
 

Fig. 6. Performance evaluation result of DFNN with rule-
dropout model based on yield stress of weld metal. 

 
5. Conclusions 

 
In this paper, we used artificial intelligence (AI) to 

predict welding residual stress. For AI training, 6300 
datasets obtained by using ABAQUS were used. Based 
on the data, the model was developed using the deep 
fuzzy neural network (DFNN) with rule-dropout 
method. The developed DFNN model with rule-dropout 
method shows good performance within 2% of root 
mean square error. It is judged that it will be possible to 
predict the welding residual stress well enough using 
the DFNN model. The predicted welding residual stress 
is sufficient to evaluate the integrity of dissimilar 
metals welding. 
 

REFERENCES 
 

[1] K. S. Lee, J. K. Lee, S. H. Lee, and J. H. Park, A study of 
Residual Stress Measurement in the Weld of Nuclear 
Materials, Transaction of the KPVP, Vol. 7, pp. 9-16, 2011. 
[2] J. S. Kim, Investigation on the Studies for Welding 
Residual Stresses in Nuclear Components, Transaction of the 
KPVP, Vol. 12, pp. 30-40, 2016. 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 19-20, 2022 

 
 
[3] J. H. Park, Y. J. An, K. H. Yoo, and M. G. Na, Leak flow 
prediction during loss of coolant accidents using deep fuzzy 
neural networks, Nuclear Engineering and Technology, Vol. 
53, No. 8, pp. 2547-2555, 2021. 
[4] H. S. Jo, Y. D. Koo, J. H. Park, S. W. Oh, C. H. Kim, and 
M. G. Na, Prediction of golden time for recovering SISs using 
deep fuzzy neural networks with rule-dropout, Nuclear 
Engineering and Technology, Vol. 53, No. 12, pp. 4014-4021, 
2021. 
[5] M. G. Na, J. W. Kim, and D. H. Lim, Prediction of 
residual stress for dissimilar metals welding at nuclear power 
plants using fuzzy neural network models, Nuclear 
Engineering and Technology, Vol. 39, No. 4, pp. 337-348. 




