

PSA / Severe Accident 2

October 20, 2022

Evaluation of Correlation Between Engineering Demand Parameters for Accurate Seismic System Reliability Analysis

Chulyoung Kang*

Ph.D. Postdoctoral Researcher | Korea Atomic Energy Research Institute (KAERI)

Junho Song Ph.D. Professor | Seoul National University

Oh-Sung Kwon Ph.D. Professor | University of Toronto

Korea Atomic Energy Research Institute

Seismic system reliability analysis

Seismic reliability analysis in complex systems

- Complex systems such as nuclear power plants (NPPs), lifeline networks, and building inventories are subject to various types of uncertainties.
- Due to these uncertainties, components in the complex system such as equipment of NPPs, network components, buildings in a region are dependent on each other, thus the seismic reliability analysis needs to be performed at system-level.

Traffic network in Sioux Falls

Spatially distributed buildings

Seismic system reliability analysis

Uncertainties in seismic system reliability analysis

Uncertainties of intensity measures (IMs)

Proposed framework

The mean EDP of a structure is predicted by a regression function of the selected intensity measure (IM), while its uncertainty can expressed by the residual term, "EDP residual".

•
$$EDP_i | IM_i = S_i (IM_i) \Psi_i (IM_i)$$

• $\ln EDP_i | \ln IM_i = s_i (\ln IM_i)$ + $\psi_i (\ln IM_i)$
Mean Variability
• $\widehat{D_i} = s_i (\widehat{IM_i}) + \psi_i (\widehat{IM_i})$ EDP residual

• By using the power-law, $D_i = a \cdot IM^b$, the relationship can be defined as $s_i(\widehat{IM}_i) = \ln a_i + b_i \widehat{IM}_i$.

• $\widehat{D_i} = \ln a_i + b_i \widehat{\mathrm{IM}}_i + \psi_i (\widehat{\mathrm{IM}}_i)$

Seismic fragility

- ✤ Fragility is defined as the conditional probability that the selected EDP ($\widehat{D_i}$) exceeds a specified limit state ($\widehat{d_i}$) given a value of IM.
- ✤ Assuming that D_i follows a Lognormal distribution, the safety factor F_i follows a Gaussian distribution.
 Safety factor F_i = d_i D_i

$$= \ln d_i - \ln a_i - b_i \widehat{\mathrm{IM}}_i - \psi_i (\widehat{\mathrm{IM}}_i) < 0$$
 (Failure)

Correlation between EDPs

Safety factor correlation

• $F_i = \ln d_i - \ln a_i - b_i \widehat{\mathrm{IM}}_i - \psi_i (\widehat{\mathrm{IM}}_i)$ • $P_{\widehat{\mathrm{IM}}_i \widehat{\mathrm{IM}}_j}$: IM correlation • $F_i = \ln d_i - \ln a_i - b_i \widehat{\mathrm{IM}}_i - \psi_i (\widehat{\mathrm{IM}}_i)$

Failure probability of structure *i*

♦ The fragility, the conditional failure probability given IM value, $\widehat{IM}_i = x$, is derived as

•
$$P(F_i \le 0 | I\widehat{\mathbb{M}}_i = x) = P(\psi_i(x) \ge \hat{d}_i - s_i(x))$$

$$= 1 - \Phi\left(\frac{\hat{d}_i - s_i(x)}{\sigma_{\psi_i(x)}}\right)$$

★ The failure probability for a given earthquake scenario can be represented as
• $p_{f_i} = P(F_i \le 0) = \int_{-\infty}^{\infty} P(F_i \le 0 | \widehat{IM}_i = x) f_{\widehat{IM}_i}(x) dx$

The joint failure probability of structure i and j

•
$$p_{f_{ij}} = P(F_i \le 0 \cap F_j \le 0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(F_i \le 0 \cap F_j \le 0 | \widehat{\mathrm{IM}}_i = x_i, \widehat{S_a}_j = x_j) f_{\widehat{\mathrm{IM}}_i \widehat{\mathrm{IM}}_j}(x_i, x_j) dx_i dx_j$$

$$= p_{f_i} \cdot p_{f_j} + \int_0^{\rho_{F_i}F_j} \varphi_2(-\beta_i, -\beta_j, \rho) d\rho$$

By using single-fold integration, $p_{f_{ij}}$ can be calculated by p_{f_i} , p_{f_j} , and $\rho_{F_iF_j}$.

Equation for incorporating both IM and EDP residual correlation

Derived the correlation coefficient between safety factors

$$\rho_{F_iF_j} = \frac{b_i b_j \sigma_{\widehat{\mathrm{IM}}_i} \sigma_{\widehat{\mathrm{IM}}_j}}{\sqrt{b_i^2 \sigma_{\widehat{\mathrm{IM}}_i}^2 + \sigma_{\psi_i}^2} \cdot \sqrt{b_i^2 \sigma_{\widehat{\mathrm{IM}}_j}^2 + \sigma_{\psi_j}^2}} \rho_{\widehat{\mathrm{IM}}_i \widehat{\mathrm{IM}}_j} + \frac{\sigma_{\psi_i} \sigma_{\psi_j}}{\sqrt{b_i^2 \sigma_{\widehat{\mathrm{IM}}_i}^2 + \sigma_{\psi_i}^2} \cdot \sqrt{b_i^2 \sigma_{\widehat{\mathrm{IM}}_j}^2 + \sigma_{\psi_j}^2}} \rho_{\psi_i \psi_j}$$

$$= A_S \rho_{\widehat{\mathrm{IM}}_i \widehat{\mathrm{IM}}_j} + A_{\psi} \rho_{\psi_i \psi_j}$$

Kang et al. (2021). Evaluation of Correlation between Engineering Demand Parameters of Structures for Seismic System Reliability Analysis. Structural Safety, 93, 102133.

Method for estimating the EDP residual

Incremental Dynamic Analysis (IDA)-based method

Kang et al. (2021). Evaluation of Correlation between Engineering Demand Parameters of Structures for Seismic System Reliability Analysis. Structural Safety, 93, 102133.

Application to seismic system reliability analysis

Probabilistic regional loss estimation considering EDP correlation

Numerical example

Regional seismic loss assessment

- Building types: (2, 4, 8, 12, 20) story buildings × 3 SCWB ratio = 15 types
- ♦ Number of buildings: $40 \times 25 = 1,000$
- ✤ Area: 4.0 km × 2.5 km
- Randomly generated following uniform distribution
- Region: Virtual city in California

Given an earthquake scenario

- GMPE: Boore & Atkinson (2008)
- Spatial correlation models: Goda & Hong (2008), Baker & Cornell (2006)
- Earthquake scenario
 - $\bullet M = 5 \sim 8 \rightarrow M = 7.0$
 - $R_{jb} < 200 \text{ km} \rightarrow R_{jb} \approx 66.2 \text{ km}$
 - $V_{S30} = 180 \sim 1300 \text{ m/s} \rightarrow V_{S30} = 760 \text{ m/s}$

1,000 hypothetical buildings

Regional seismic loss assessment

Total loss exceedance probabilities

Linear-Linear scale

Linear-Log scale

Probability of total loss	Both correlated	IM correlated	EDP residual correlated	Uncorrelated
P(5% total loss)	0.0690	0.0600	0.0406	0
P(10% total loss)	0.0194	0.0124	0.0042	0
P(15% total loss)	0.0080	0.0040	0.0008	0
P(20% total loss)	0.0040	0.0017	0.0002	0

Numerical example

Regional seismic loss assessment

- Building types: 44 archetype buildings
- Number of buildings: 500
- ✤ Area: 2.5 km × 2.5 km
- Randomly generated following uniform distribution
- Region: Four virtual cities in California

Four virtual cities

- City A: Steel and wood buildings
- City B: Concrete and masonry buildings
- City C: High-rise buildings (≥ 8 stories)
- City D: Low-rise buildings (< 8 stories)
- Given an earthquake scenario
 - *M* = 7.5
 - $R_{jb} \approx 35.4 \text{ km}$
 - $V_{S30} = 760 \text{ m/s}$

500 hypothetical buildings

Building types	Number of archetype buildings				
	City A	City B	City C	City D	
S1L	46	-	-	56	
S1M	92	-	-	111	
S1H	294	-	250	-	
C1L	-	46	-	55	
C1M	-	91	-	111	
C1H	-	295	250	-	
URML	-	23	-	28	
URMM	-	45	-	56	
W1	22	-	-	27	
W2	46	-	-	56	

Regional seismic loss assessment

Total loss exceedance probabilities

Concluding remarks

Summary

- New seismic reliability analysis framework is developed for considering both the IM correlation and EDP residual correlation in a complex system.
- This research was proposed to estimate the variance and correlation of EDP residual correlation by using the analysis results.
- To verify the developed method, probabilistic seismic loss was estimated for a virtual region.
 It was shown that negligence of the EDP residual correlation underestimated the probability of total loss.

Further research topics

- Apply the proposed framework to other system reliability analysis with various disasters and risks.
- Extend the developed methods for estimating EDP residuals to other types of IMs and EDPs depending on the structural failure of interest.

