한국원자력학회 추계학술발표회 2022. 10. 21

CALPHAD Studies on KCl as a Candidate Base Salt for U/Pu Fast Breeding Molten Salt Reactor Cycles

Woei Jer Ng^a, Ho Jin Ryu^{a,b*}

^a Department of Nuclear and Quantum Engineering, KAIST, Daejeon ^b Department of Materials Science and Engineering, KAIST, Daejeon *For Correspondence: hojinryu@kaist.ac.kr

Introduction: NaCl vs KCl as Base Salts Methodology: **CALPHAD Simulations** Table of **Results**: Contents Effects of FP on Fuel Liquidus Discussion: Short-Range Interactions between Fuel Constituents **Recap and Implications** Nuclear Fuel Materials KAIST Laboratory

Introduction: Molten Salt Reactors (MSR)

(TerraPower MCFR)

• Inherently safe Gen IV reactor concept

- Strong negative temperature coefficient
- Operation at atmospheric pressure (eliminates radioactive release due to *high pressure gradient*)

• Projected Economic Value

- High operating temperature
- High thermal efficiency
- Zero/Low Radioactive Waste Production
 - Low initial inventory of fissile material
 - Recycling of minor actinides as fuel

Introduction: Choice of Base Salt

Laboratory

Introduction: NaCl vs KCl as Base Salt

Introduction: NaCl vs KCl as Base Salt

From a neutronics' perspective....

Hong et el. concluded that $KCI - UCl_3$ was the better fuel candidate as the fuel allows for smaller core sizes and better breeding capabilities.

However, from a materials' perspective....

NaCl – UCl₃ may be more advantageous for the following reasons:

- Lower viscosity, thereby improving pumpability and heat transfer efficiency.
- Lower eutectic temperature, which enables lower operating temperature, hence mitigating risk of structural material corrosion.
- Does not form intermediate compounds with actinide chlorides.

Nuclear Fuel Materials Laboratory Important property when considering transient compositional shifts due to Pu breeding and FP evolution!

Q: How does KCl compare to NaCl in the transient performance of MSR fuels?

Methodology: Modeling Compositional Shifts in MSR Fuels

Differential equations of composition change due to fission and neutron capture transmutation:

$$\frac{dU}{dt} = -\alpha \omega_{f_U} U - \beta (1 - \omega_{f_U}) U$$
$$\frac{dP}{dt} = \beta (1 - \omega_{f_U}) U - \alpha \omega_{f_P} P$$
$$\frac{dF}{dt} = n (\alpha \omega_{f_U} U + \alpha \omega_{f_P} P)$$

 ω_{f_U} : weight fraction of U - 235 ω_{f_P} : weight fraction of fissile plutonium α : annual consumption of fissile isotopes by fission β : annual consumption of fertile isotopes by neutron capture

n : average number of FP per fission

.aboratorv

Solution to linear system of differential equations: $U(t) = U_0 \cdot \exp(-\lambda_1 t)$ $P(t) = \frac{\beta(1 - \omega_{f_U})U_0}{\lambda_0 - \lambda_1} \cdot \exp(-\lambda_1 t) + \left[P_0 - \frac{\beta(1 - \omega_{f_U})U_0}{\lambda_0 - \lambda_1}\right] \cdot \exp(-\lambda_2 t)$ $F(t) = \frac{n\alpha}{\lambda_1} \left[\omega_{f_U} U_0 + \frac{\beta \omega_{f_P} (1 - \omega_{f_U}) U_0}{\lambda_2 - \lambda_1} \right] \cdot \{1 - \exp(-\lambda_1 t)\}$ $+\frac{n\alpha\omega_{f_P}}{\lambda_2}\left[P_0-\frac{\beta(1-\omega_{f_U})U_0}{\lambda_2-\lambda_1}\right]$ $\cdot \{1 - \exp(-\lambda_2 t)\}$ $\lambda_1 = \alpha \omega_{f_{II}} + \beta (1 - \omega_{f_{II}}); \lambda_2 = \alpha \omega_{f_P}$

Methodology: Modeling Compositional Shifts in MSR Fuels

Applying the compositional shift model to the proposed REBUS-3700 fuel composition (55mol% Base Salt-38mol% UCl₃-7mol% PuCl₃):

No composition change for base salt is assumed.

UCl₃ is consumed with increasing operation time.

Molar fraction of PuCl₃ increases due to breeding

One soluble fission product (n = 1) per fission reaction assumed. Fission gases and noble metals do not interact with fuel and are ignored.

Methodology: Modeling Liquidus Temperature Changes due to Compositional Shifts

Results: Liquidus Temperature Change of MSR Fuel

Assuming only all soluble fission products are Cs⁺ (for simplicity):

KAIST

Plotting entropy of mixing (ΔS_{mix}) curves at 1000°C:

- CALPHAD simulations showed that the transient behavior of MSR fuels depends primarily on the interactions between the base salt and actinide content.
- Due to short-range ordering between KCl and actinide chlorides, there is a large tendency for intermediate compound formation, which may cause inadvertent freezing during reactor operation.
- KCl should be used in tandem with NaCl as base salt to lower the fuel liquidus temperature, increase actinide solubility*, and mitigate intermediate compound formation.

15

Results: Liquidus Temperature Change of MSR Fuel

• The observed trends are similar for both Rb⁺ and Cs⁺.

Inference: The response of the fuel liquidus to FP evolution is largely independent of the FP species, but dependent on the interactions between the base salt and actinide content.

KAIS

17

Laboratory

Nuclear

Mat