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1. Introduction 

 
Xenon-135 (135Xe) is produced by fission or by the 

decay of Iodine-135 (135I), which is also produced by 
fission. It has a large thermal neutron absorption cross-
section. This feature adversely affects both the reactor 
operation state and shutdown state. For example, it 
absorbs thermal neutrons instead of Uranium-235 (235U) 
in operation, preventing the multiplication factor from 
being maintained as one [1]. In addition, it provides a 
greater negative reactivity than that of control rods for a 
period of time at shutdown, preventing the reactor from 
restarting [1]. As such, it is important to understand the 
amount of 135Xe in a reactor since it has a lot of influence 
on the reactor during operation and after shutdown. 

Actually, this phenomenon is well-known so there 
have been a lot of approaches to describe and estimate 
the decay chain of 135Xe such as numerical analysis using 
a differential equation (PDE) solver, etc. Even though 
detailed models have been developed, this paper will use 
a simple form [1] to show the applicability of machine 
learning techniques in this area, particularly a physics-
informed neural network (PINN) which does not require 
a large amount of training data. Instead of training data, 
it is driven by the laws of physics. Therefore, it can 
produce results more efficiently than other neural 
networks in complex physical phenomena, biological or 
engineering systems, and so on [2]. 
 

2. Background 
 

This section describes the basic principles for PINN 
and differential equations for the production and 
destruction of 135Xe. 

 
2.1 Physics-informed neural networks (PINNs) 

 
Nonlinear PDEs are used in many fields such as 

natural phenomena and laws of physics. A general 
nonlinear PDE is expressed in the following form. 
 

 𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑁𝑁𝑥𝑥[𝑢𝑢] = 0, 𝑥𝑥 ∈ 𝛺𝛺, 𝑡𝑡 ∈ [0,𝑇𝑇] (1) 
 
where 𝑢𝑢(𝑥𝑥, 𝑡𝑡) denotes the latent (hidden) solution, 𝑁𝑁𝑥𝑥 is 
a nonlinear differential operator, 𝑥𝑥 denotes a vector of 
space coordinates, and 𝑡𝑡 denotes the time. The domain 𝛺𝛺 
of the nonlinear PDE is bounded based on the prior 
knowledge of the dynamic systems such as a length or a 
diameter of a pipe, and [0,𝑇𝑇] is the time interval within 
which the system evolves [2]. 

In equation 1, the left side is defined as 𝑓𝑓. This 𝑓𝑓 acts 
as a physical constraint in the process of approximating 
the nonlinear PDE with a neural network. The first term 
𝑢𝑢 in equation 1 is approximated by the neural network as 
learning proceeds. Meanwhile, the second term 𝑁𝑁𝑥𝑥[𝑢𝑢] of 
equation 1 is also derived with the same neural network. 
The loss function using mean square error (MSE) for 
approximating the solution of equation 1, which is 
denoted as 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 , is as follows [3, 4]. 

 
 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢 + 𝑊𝑊 ∙ 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑓𝑓  (2) 
 

where 𝑊𝑊 is a factor denoting the weight associated with 
the loss term 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑓𝑓 , 
 

 
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢 =

1
𝑁𝑁𝑢𝑢

�[𝑢𝑢𝑁𝑁𝑁𝑁(𝑡𝑡𝑢𝑢𝑖𝑖 , 𝑥𝑥𝑢𝑢𝑖𝑖 ; 𝜃𝜃) − 𝑢𝑢𝑖𝑖]2
𝑁𝑁𝑢𝑢

𝑖𝑖=1

 (3) 

 
 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
𝑓𝑓 =

1
𝑁𝑁𝑓𝑓

�[𝑓𝑓�𝑡𝑡𝑓𝑓𝑖𝑖 , 𝑥𝑥𝑓𝑓𝑖𝑖�]2
𝑁𝑁𝑓𝑓

𝑖𝑖=1

 (4) 

 
where {𝑡𝑡𝑢𝑢𝑖𝑖 , 𝑥𝑥𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖} denotes the initial and boundary data 
points on 𝑢𝑢(𝑥𝑥, 𝑡𝑡), 𝑢𝑢𝑁𝑁𝑁𝑁(𝑥𝑥𝑢𝑢𝑖𝑖 , 𝑡𝑡𝑢𝑢𝑖𝑖 ;𝜃𝜃) denotes the prediction 
of the neural network on the inputs (𝑥𝑥𝑢𝑢𝑖𝑖 , 𝑡𝑡𝑢𝑢𝑖𝑖 ), 𝜃𝜃 refers to 
the weights in the neural network, {𝑥𝑥𝑢𝑢𝑖𝑖 , 𝑡𝑡𝑢𝑢𝑖𝑖 } represents the 
collocation points for 𝑓𝑓(𝑥𝑥, 𝑡𝑡) , 𝑁𝑁𝑢𝑢  and 𝑁𝑁𝑓𝑓  represent the 
number of points generated for 𝑢𝑢(𝑥𝑥, 𝑡𝑡)  and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) , 
respectively [2, 4]. 

In equation 3, 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑢𝑢  is the loss term for the initial value 
and the boundary value. It represents the difference 
between the initial, boundary value predicted by the 
learned neural network and the actual initial, boundary 
value. In equation 4, 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

𝑓𝑓  is the loss term for the 
physical law of equation 1. It represents the difference 
between the physical values predicted by the learned 
neural network at the collocation point and the actual 
physical values.  

Through 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀
𝑓𝑓 , solutions that violate the physics are 

immediately discarded, reducing the amount of solution 
space to be considered and significantly reducing the size 
of neural networks such as the number of nodes and 
layers [3]. Therefore, PINN can obtain the same level of 
solutions using relatively less computational cost 
compared to classical numerical analysis [2]. Purely 
data-driven models may fit observations very well, but 
predictions may be physically inconsistent or 
implausible, owing to extrapolation or observational 
biases that may lead to poor generalization performance. 
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Compared to purely data-driven models, PINN is a 
physical law-based model that provides physically 
consistent predictions even when data is scarce [5]. 

 
2.2 Production and destruction of 135 Xe 
 

There are two paths for the production of 135Xe in a 
reactor. The first path is beta-decay of 135I. 135I is 
produced by the beta-decay of Tellurium-135 (135Te) or 
fission of 235U. 135Te has a very short half-life (11 sec), 
so it can be assumed that 135I is produced by only fission 
of 235U. The second path for the production of 135Xe is 
fission of 235U [1]. 

There are also two destruction paths for 135Xe in the 
reactor. The first path is for 135Xe to absorb thermal 
neutrons. The second path is for 135Xe to beta-decay to 
Cesium-135 (135Cs). 
 

 
Fig.  1. The process of production, destruction of 135I, 135Xe 
 

According to the above production, destruction paths, 
in order to estimate the amount of 135Xe, the differential 
equation for the amount of 135I and of 135Xe should be 
solved at the same time. Therefore, these differential 
equations appear in the form of a simultaneous equation 
as shown in equation 5, 6 [1]. 
 

 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛾𝛾𝐼𝐼𝛴𝛴𝑓𝑓𝜙𝜙𝑇𝑇 − 𝜆𝜆𝐼𝐼𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝛾𝛾𝑋𝑋𝛴𝛴𝑓𝑓𝜙𝜙𝑇𝑇 + 𝜆𝜆𝐼𝐼𝑑𝑑 − 𝜎𝜎𝑎𝑎2𝑋𝑋 𝜙𝜙𝑇𝑇𝑑𝑑 − 𝜆𝜆𝑋𝑋𝑑𝑑
 

(5) 
 
(6) 

 
𝑑𝑑 is the number of 135I 𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎/𝑐𝑐𝑎𝑎3 , 𝛾𝛾𝐼𝐼  is the effective 
yield of this isotope, and 𝛴𝛴𝑓𝑓  is thermal fission cross-
section. 𝜙𝜙𝑇𝑇  is the thermal neutron flux. 𝜆𝜆𝐼𝐼  is the decay 
constant of 135I. 𝑑𝑑 is the 135Xe concentration in 𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎/
𝑐𝑐𝑎𝑎3 . 𝛾𝛾𝑋𝑋  is the fission yield of the 135Xe. 𝜎𝜎𝑎𝑎2𝑋𝑋  is the 
thermal absorption cross-section of 135Xe and 𝜆𝜆𝑋𝑋 is the 
decay constant of 135Xe. 
 

3. Results 
 

PINN requires differential equations and initial or 
boundary conditions instead of training data. Equation 5, 
6 are 𝑓𝑓 mentioned in Section 2.1 when the right side is 
moved to the left side or vice versa. Therefore, equation 
5, 6 act as the physical law of PINN. The element 
necessary for learning of PINN is completed by 
additionally setting the initial or boundary condition. The 
conditions provide the loss function given in equation 3 

in PINN. The following equation shows initial condition 
in equation 5 and 6. 
 

 𝑑𝑑(0) = 1015 #/𝑐𝑐𝑎𝑎3,𝑑𝑑(0) = 1014 #/𝑐𝑐𝑎𝑎3 (7) 
 
In addition, the condition that the 𝜙𝜙𝑇𝑇 in equations 5 and 
6 is a step function was applied to observe the change in 
the amount of 135Xe when the power of a reactor was 50% 
while maintaining the steady state in 100%. 
 

 
𝜙𝜙𝑇𝑇 = �1014 #/𝑐𝑐𝑎𝑎2 ∙ ℎ           ∶ 𝑡𝑡 < 200ℎ

0.5 × 1014 #/𝑐𝑐𝑎𝑎2 ∙ ℎ ∶ 𝑡𝑡 ≥ 200ℎ
 (8) 

 
PINN consists of 4 hidden layers whose activation 

function is “RELU”. The optimizer used ADAM with a 
learning rate of 0.001. The neural network was trained by 
making 20,000 collocation points for 𝑡𝑡 ∈ [0, 400] . 
Figure 2 shows value of loss function of PINN for each 
iteration. Figure 3 is a graph showing the amount of 135I, 
135Xe (blue, red dots) by time predicted by PINN and 
the analytic solution (gray, yellow line) of equation 5, 6. 
 

 
Fig.  2. Loss function of PINN 
 

 
Fig.  3. Amount of 135I, 135Xe using PINN and analytic solution 
 

Figure 2 shows that as learning progresses, the loss 
value partially peaks, but converges to zero as a whole. 
Accordingly, it can be seen in Figure 3 that PINN 
predicts almost the same value as the analytic solution. 
Especially, the results of the PINN were predicted 
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similarly to the exact solution even around 200 hours, 
where the reactor power plunged from 100% to 50%. 
 

4. Conclusions 
 

135Xe is a representative poison which has a large 
thermal neutron absorption cross-section. Therefore, it is 
important to predict the amount of 135Xe in a reactor 
during the operation of a nuclear power plant. This is 
because reactivity control, reactor dead time analysis, etc. 
can be properly performed only when the amount of 
135Xe in the reactor is known. 

Differently from other artificial neural networks, 
PINN is able to accurately predict the amount of 135Xe 
only with differential equations and initial conditions. 
Moreover, when the reactor power is in transient, it 
simulated the amount of 135Xe similarly to the exact 
solution even at the boundary. In conclusion, if the 
governing equation is ready for a phenomenon with 
various variables or a case where data is difficult to 
obtain, PINN is expected to be one of the useful 
numerical approaches. 
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