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1. Introduction 

 

The interest in passive safety systems for nuclear 

power plants has increased since severe accidents 

including the Fukushima accident. Among the proposed 

concepts of the passive safety system, which include 

passive containment cooling systems (PCCS), passive 

auxiliary feedwater systems (PAFS), hybrid safety 

injection tanks (Hybrid SIT), etc., the application of 

heat pipe has been paid attention due to the simplicity. 

The heat pipe is an effective heat removal device using 

boiling and condensation. The application of heat pipes 

for heat removal systems and safety systems has 

increased for nuclear power plants. However, the 

accurate prediction for thermal performance of heat 

pipe is required for application to the nuclear power 

plant, considering that safety is considered the top 

priority in nuclear power plants. Furthermore, accurate 

prediction for the thermal performance of heat pipes 

could reduce the amount of heat pipe applied to nuclear 

power plants. 

However, the prediction of thermal performance for 

heat pipes is difficult because the thermal performance 

of heat pipes is affected by various factors. The heat 

pipes are operated by capillary force that enhances the 

heat transfer performance with wick structures, 

compared with thermosyphon. The application of wick 

structures has been more difficult to interpret for 

thermal performance prediction of heat pipe before 

experiment validation. Furthermore, the thermal 

performance prediction of the heat pipe based on the 

correlation has been almost impossible since the studies 

for performance enhancement of the heat pipe with 

nanoparticles. The performance of heat transfer on heat 

pipe could be deteriorated or improved based on the 

type of wick, the geometrical information, operating 

condition, and the presence of nanoparticles. Therefore, 

the prediction and evaluation of the heat transfer 

performance of heat pipes are conducted based on 

experimental verification, considering chemical and 

physical conditions. The experimental validation for the 

heat transfer performance of heat pipes requires a 

significant cost. Considering all operating conditions, 

manufacturing for validation of the performance is cost 

inefficient because heat pipes applied to nuclear power 

plants have large-scale. Furthermore, accurate 

prediction of heat pipes could reduce the number of 

applied heat pipes. 

Because the performance of heat pipe is affected by 

several factors, the interest in the deep learning 

application has increased with performance 

enhancement of prediction compared to correlation. The 

heat transfer performance prediction with ANN has 

demonstrated outstanding performance. However, the 

previous prediction was evaluated within the range of 

training data. Although heat pipe is affected by wick 

type, geometrical information, etc. the factor used for 

deep learning application was not considered 

sufficiently. Furthermore, previous studies were carried 

out based on the thermosyphon and pulsating heat pipe. 

Therefore, this study suggests the heat transfer 

performance prediction technique for a cylindrical heat 

pipe with deep learning application, considering the 

type of wick, geometrical and chemical information. 

Datasets used for deep learning application were 

obtained from the literature. Based on the type of wick, 

geometrical and chemical information, the thermal 

resistance of a heat pipe was predicted. The prediction 

result was compared with the experimental validation. 

The prediction of the heat transfer performance of the 

heat pipe is considered to contribute to the improvement 

of nuclear power plant safety and reduce both time and 

cost before experimental validation. 

 

2. Modeling and Methodology 

 

2.1. Configuration of dataset 

 

The dataset was obtained to enhance the prediction 

performance of thermal resistance, considering the 

published literature for training and evaluation 

depending on the geometrical and chemical information 

with various operating conditions [1-14]. The range of 

datasets used for deep learning applications is shown in 

Table 1 

 

Table I: The range of dataset for this study 

Parameter Range 

Heat load (W) 5-600 

Resistance (K/W) 0.05325 - 1.35574 

Wick type 
Thermosyphon, Groove, 

Screen mesh, Sintered 

Nanoparticle Al2O3, CuO, Cu, SiC, TiO 

Concentration (%) 0.0005 - 3.0 

Inclination angle (°) 0 - 90 

Length of evaporation (Le) / 

Length 
0.2-0.45 

Length of adiabatic (La) / 

Length 
0.1-0.6 

Length of condenser (Lc) / 

Length 
0.2-0.5 

Length (m) 0.2 - 1.0 
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Diameter (mm) 6.35 – 22 

Thickness (mm) 0.5 – 2 

Pressure (kPa) 0 - 19.97 

Filling ratio (%) 30 – 100 

Material 
Copper, Stainless 316, Carbon 

steel 

Cooling condition (°C) 24 ± 1 

 

Numerous factors should be considered for the 

enlargement of the prediction range because the thermal 

resistance of heat pipe significantly depends on the 

factors. Therefore, the database was carried out based 

on numerous consideration that includes pressure, 

filling ratio, thickness, length, diameter, length ratio, 

material, the concentration of nanoparticle, cooling 

condition, and type of wicks. Furthermore, interpolation 

was carried out to increase the amount of dataset about 

each literature, because each literature represents a 

small amount of dataset. The total amount of data was 

97204. 20% of data were used for evaluation and 80% 

was classified as a training and validation dataset. 

 

2.2. Configuration of ANN 

 

ANN has been developed based on the nervous 

system by a generalization of mathematical models. The 

structure of ANN is composed of three types of layers: 

input layer, hidden layer, and output layer. In the case 

of this study, the input layer represents the information 

of heat pipe and output layer represents the thermal 

resistance of heat pipe. The weights and biases of ANN 

are constructed in the hidden layer for the prediction. 

The function of ANN for weights and biases is shown 

below 

 
(1) 

 

The performance of regression has been improved 

with the development of ANN. This study was carried 

out based on the optimal deep learning model. The 

optimal deep learning model was derived with a 

comparison of ANN architecture and Deep neural 

network (DNN) architecture, which has several 

hidden layers. The number of nodes for hidden layers 

of ANN and DNN was compared for the selection of 

the optimal model. The architecture of ANN and 

DNN is shown in Fig.1 with the input layer, hidden 

layer, and output layer. The batch size for deep 

learning training was 64 and the activation function 

for the hidden layer was the rectified linear unit 

(ReLU) function. The optimization function for deep 

learning applications was the adaptive momentum 

estimation (Adam) algorithm with a 0.001 learning 

rate.  

 

 
Fig. 1. Architecture of ANN and DNN 

 

The loss of deep learning means the error between 

the reference value and the output resulting from the 

deep learning model based on the criterion. The weights 

and biases are adjusted to optimize the loss, as training 

proceeds. Therefore, proper application of the loss 

function is considered critical in the output of the model. 

The type of loss functions used for deep learning 

regression is related to the performance evaluation of 

the regression method. Based on the performance 

evaluation method for the regression technique, mean 

absolute error (MAE), mean square error (MSE), mean 

absolute percentage error (MAPE), percentage error 

(PE), and coefficient of determination (R2) are used for 

the performance evaluation of this study. Equations for 

each performance evaluation are shown in the 

following: 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 

2.3. Experimental setup 

 

The performance of the deep learning model was 

further investigated with experimental validation. The 

experimental verification was conducted in out of range 

for the dataset to confirm the prediction performance of 

the heat transfer performance for heat pipe. Stainless 

steel 316 heat pipe with screen mesh, an outer diameter 

of 1 in (23 mm inner diameter), and a length of 800 mm 

was prepared. The temperature distribution was 

acquired from nine K-type thermocouples (TCs) 

installed on the evaporator, adiabatic, and condenser 

sections. Fig. 2 represents the TC locations on the heat 
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pipe with screen mesh. The heat pipe was operated with 

DI water as a working fluid. The pressure of the heat 

pipe was set to 4.2 kPa to remove non-condensable 

gases. DI water was injected into the heat pipe with a 

50% of fill ratio. The summary of the test condition is 

shown in Table 2. 

 

 
Fig. 2. The location of thermocouples on the heat pipe 

 

Table Ⅱ: The experimental condition for validation 

Parameter Condition 

Heat load (W) 100 

Fill ratio (%) 50 

Wick type 100-mesh SS screen mesh 

Initial pressure [kPa] 4.2 

Cooling condition 26 °C, 2.04 lpm 

Inclination angle (°) 90 

Length ratio (%) 25 : 25 : 50 

 

3. Results and discussions 

 

All performance evaluations of the heat transfer 

performance prediction model were carried out based 

on the validation dataset and test dataset, 20% of data, 

not used for training. The comparison of overall MAE, 

MSE, MAPE, and coefficient of determination between 

actual thermal resistance and predicted thermal 

resistance was carried out to confirm overall prediction 

performance. The variation of prediction performance 

in accordance with the number of nodes is shown in Fig. 

3. DNN model demonstrated the highest performance 

for prediction at 256 nodes.  
(a) 

 

(b) 

 
(c) 

 

(d) 

  
Fig. 3. The variances of errors in accordance with nodes: 

(a) mean absolute error, (b) mean square error, (c) mean 

absolute percentage error, and (c) coefficient of determination. 

 

 
Fig. 4 The PE and MAPE of DNN having 256 nodes. 

 

As shown in Fig. 4, the highest PE was confirmed at 

a thermal resistance of less than 0.2 K/W for DNN with 

256 nodes because the loss function was utilized as 

MSE. Therefore, the thermal resistance was artificially 

increased to enhance the prediction performance. The 

artificial increase for predicted data helps the 

performance of artificial intelligence converge by 

manipulating the prediction range. The modified 

thermal resistance was multiplied by 100 to the actual 

thermal resistance. The heat transfer performance 

prediction model was trained by the modified thermal 

resistance based on the DNN with 256 nodes. As a 

result, the overall performance of prediction increased. 

Therefore, this model was used for experimental 

validation. Fig. 5 represents the PE to the actual thermal 

resistance with MAPE, MAE, MSE, and the coefficient 

of determination. 

 

 
Fig. 5 The MAEs, MSEs, coefficient of determination, and PE 

actual thermal resistance graph with MAPE. 

 

Table 5 represents the experimental verification 

results through stainless steel heat pipe with screen 

mesh at 100W. Considering that the previous literature 

shows a maximum error of 20% for data within the 

range, 16.5% is considered appropriate. However, 
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further experimental validation would be required to 

confirm the prediction performance of the deep learning 

model. 

 

Table Ⅲ. Experimental validation 

Actual Prediction Error 

0.3284 K/W 0.3826 K/W 16.5 % 

 

4. Conclusion 

 

Recently the attention to the heat pipe has increased 

to remove heat for the nuclear power plants. However, 

the prediction of the heat transfer performance of the 

heat pipe is considered difficult because the thermal 

performance of the heat pipe is affected by numerous 

factors. Furthermore, the prediction of the heat pipe 

heat transfer has been more difficult with the suggestion 

of the type of wick type and chemical addition as 

nanoparticle. Therefore, this study proposes the deep 

learning-based thermal performance prediction of the 

heat pipe, considering various operating conditions, and 

geometrical and chemical information. Database for 

deep learning application was conducted based on the 

published literature to enhance the diversity of data. 

The derivation of the optimal model was conducted 

with the comparison of ANN and DNN including the 

number of nodes. Furthermore, the thermal resistance 

used for training the deep learning model was modified 

to enhance the prediction performance. As a result, the 

experimental validation showed a 16.5% of percentage 

error by the optimal model with modified thermal 

resistance. However, the experimental validation should 

be conducted more and the performance Improvement 

for the prediction of the deep learning model should be 

considered.  

The proposed technique could contribute to reducing 

the time and cost without experimental validation 

before application to nuclear power plants with the 

enhancement of the safety of nuclear power plants. 

Furthermore, this method would be considered to be 

utilized in numerous industrial fields as well as nuclear 

power plants. 
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