

#### Presentation

### Tritium Concentration in Precipitation around Wolseong NPP Presentation for KNS

Pusan National University Mechanical Engineering Nuclear Systems Major In Suk Song

#### Contents



- 1. Introduction
- 2. Method
- 3. Result
- 4. Conclusion

#### 1. Introduction



- Introduction Wolseong NPP
  - Wolseong NPP located in Gyeongju, consists of four PHWRs and two PWRs
  - A lot of tritium is generated, especially in PHWRs (using  $D_2O$ )
  - PHWRs release tritium continuously, while PWRs release tritium intermittently into the atmosphere
  - Radioactive material (Tritium) in gaseous form is the main transport routes that can effect the environment
- Purpose
  - To know the range of tritium dispersion in the atmosphere
  - To know correlation between the tritium concentration in precipitation and wind direction

# 2.1 Sampling Sites

- Considering Wind direction
  - Considering wind direction centered on the Wolseong unit 4
  - Main wind direction : northwest to south east (NW direction)
  - NE(or NNE) and SW(or SSW) direction also have high frequency
  - Sample Location
    - ① mainly in the southern (SW and SSW) region
    - ② Mainly in the northern (NE and NNE) region





Wind direction frequency Wolseong NPP during the January 2018-2021

### 2.2 Sampling Sites

- Considering distance
  - Total Sampling location : 13 sites

| Station | Distance<br>(km) | Direction |  |
|---------|------------------|-----------|--|
| S1      | 1.05             | S         |  |
| S2      | 1.86             | S         |  |
| S3      | 2.10             | SSE       |  |
| S4      | 3.10             | SW        |  |
| S5      | 3.75             | SSW       |  |
| S6      | 13.2             | SW        |  |
| S7      | 18.9             | S         |  |
| W1      | 1.24             | W         |  |
| N1      | 3.75             | NNE       |  |
| N2      | 4.30             | NNW       |  |
| N3      | 5.25             | NNE       |  |
| N4      | 10.9             | NNW       |  |
| N5      | 28.6             | NW        |  |







# 2.3 Tritium in the precipitation

- Information
  - During the sampling period, it rained 14 times
  - The concentration distribution was higher mainly in southern regions

| Location   | Sample Num<br>ber | Maximum<br>Concentration [Bq/L] | Date<br>[2022] |
|------------|-------------------|---------------------------------|----------------|
| S1         | 14                | 246 ± 3                         | April 13,14    |
| S2         | 9                 | 56.1 ± 1.7                      | June 13,14     |
| S3         | 9                 | 440 ± 3                         | April 13,14    |
| S4         | 13                | 25.2 ± 1.2                      | March 17,18,19 |
| S5         | 14                | 20.7 ± 1.3                      | June 5,6       |
| <b>S</b> 6 | 11                | Not dected                      |                |
| S7         | 12                | 8.04 ± 1.13                     | June 13,14     |
| W1         | 14                | 34.8 ± 1.3                      | April 26       |
| N1         | 12                | 42.4 ± 1.4                      | June 27        |
| N2         | 13                | 45.7 ± 1.5                      | March 25,26    |
| N3         | 14                | 38.2 ± 1.4                      | June 27        |
| N4         | 14                | 15.5 ± 1.2                      | March 25,26    |
| N5         | 11                | Not dected                      |                |



# 3.1 Tritium in the precipitation

#### **2022.4.13**. ~ 2022.4.14.

- The maximum concentration at S1 and S3
- Wind direction was N and NNE
- Tritium was also detected at S1 and S7, and was detected at no other sites
- **2**022.6.13. ~ 2022.6.14.
  - The maximum concentration at S2 and S7
  - Wind direction was NE and NNE
  - Tritium was also detected at S1, S2, S2, and S5
  - Tritium was detected 3 times at S7 site



<Wind direction 2022.4.13. ~ 2022.4.14.> <Wind direction 2022.6.13. ~ 2022.6.14.>



## 3.1 Tritium in the precipitation

#### **2**022.3.17. ~ 2022.3.19.

- The maximum concentration at S4
- Wind direction was NNW, NW and N
- Tritium was also detected at S1 and S2, and S4

#### **2022.6.5.** ~ 2022.6.6.

- The maximum concentration at S5
- Wind direction was NNE and NE
- Tritium was detected in all southern points except for S6 on that day











## 3.1 Tritium in the precipitation



<Wind direction 2022.4.26.>

- In case of W1, low or not detected at all (NNE, WNW, SW, W, NW)
- Tritium was detected at S1, S2, S4, N1, N2, N3, and N4 on that day



<Wind direction 2022.6.27.>

- In case of northern region, low or not detected at all (SSW)
- The maximum concentrations were detected at N1 and N3



<Wind direction 2022.3.25. ~ 3.26.>

- The maximum concentration at N2 and N4 (SW, SSW, S, NNE, NNW)
- During entire period, tritium was detected at N5

### 3.2 Precipitation

HI CH BY HI . MUSUL

- Relation between tritium concentration and precipitation
  - The amount of precipitation was measured whenever it rained or snowed
  - Precipitation amount and tritium concentration was observed
  - The maximum concentration was higher :
    - When the precipitation was small
  - Tritium released into the atmosphere is less washed away by the precipitation



<Correlation between tritium concentration and rainfall>

#### 3.3 Distance



- Relation between tritium concentration and distance
  - Tritium concentration is relation distance
  - In both the southern and the northern regions,

① Tritium was mainly detected at points close to the NPP

- 2 Tritium was higher the closer to the NPP
- On the other hand, it was low or not detected at points far from the NPP





# 3.4 Transfer to precipitation sample

- Tritium transfer to precipitation sample
  - Rainwater was collected and analyzed for each precipitation
  - In February 2022, it rained just only one day (Feb. 13)
  - Samples for this study were collected on Feb. 14 (immediately after precipitation)
  - Another rainwater from same site was collected on Feb. 28

| Precipitation date         |    | February 13 |             |
|----------------------------|----|-------------|-------------|
| Collection date            |    | February 14 | February 28 |
| Concentration<br>[Bq/L] at | W1 | <1.33       | 5.01 ± 1.05 |
|                            | N3 | <1.33       | 7.51 ± 1.08 |

### 4. Conclusion



- Conclusion
  - Related to the distance from the NPP
  - Related to the wind direction(W1 and S1) and the amount of precipitation
  - The effect of tritium on precipitation is greater in the southern region than in the northern region
  - A suspicious phenomenon was observed for the transfer of tritium the air to the precipitation sample
  - Special care must be taken in collecting samples to accurately measure the tritium concentration in precipitation