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1. Introduction 

 
Sodium-cooled fast reactor (SFR) has been 

researched as one of the most primary candidates of the 
generation IV reactors since it has advantages as 
enhanced reactor safety, fuel cycle economy, and 
environmental protection. These advantages are, to 
some extents, the direct results of using a metallic fuel 
because it has superior inherent safety and fuel-
efficiency characterized by high thermal conductivity 
and high heavy metal density. In terms of this, metallic 
fuels have been considered as one of the most probable 
options for the advanced reactors such as SFR-type 
Small Modular Reactor (SMR). KAERI is developing a 
SFR-type advanced SMR named as SALUS (Small, 
Advanced, Long-cycles and Ultimate Safe SFR) using 
U-10Zr metallic fuel, and it is necessary to perform in-
pile performance verification tests under fast neutron 
environment to ensure that the metallic fuels can retain 
their integrity to high burnup. Hence, metallic fuels 
made of U-10Zr fuel and ferritic martensitic stainless 
steel claddings (HT9, FC92B, and FC92N) were 
fabricated in KAERI, and irradiation tests have been 
performed in BOR-60 experimental fast reactor located 
in Russia. Recently, the irradiation tests to the maximum 
burnup of 7 at.% have been completed, and fuel 
performance analyses were performed using irradiation 
histories to ensure that the fuel rods retain their 
mechanical integrity. Here, these fuel performance 
analysis results will be presented. 

 
2. Irradiation Tests Performed in BOR-60 

 
Metallic fuels made of U-10Zr (19.75% U-235 

enrichment) and ferritic martensitic stainless steel 
claddings (HT9, FC92B, and FC92N) were fabricated in 
KAERI, and irradiation tests were performed in BOR-
60 located in Russia. HT9 wires were wrapped around 
the fuel rods and their diameter was 0.5 mm. The fuel 
test rig was designed to allow sodium coolant flow 
adjacent to the fuel rods. Fig. 1 shows linear heat 
generation rate (LHGR) and peak inner cladding 
temperature (PICT) of the fuel rods during the 
irradiation test. The maximum and time-averaged 
LHGR were 362 and 330 W/cm, respectively. The time-
averaged maximum PICT was 642 °C. Effective full  
power day (EFPD) was 747 days. The maximum peak 
flux was 1.86·1015 n/(cm2·s).  
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Fig. 1. Linear heat generation rate and peak inner cladding 
temperature of fuel rods irradiated in BOR-60.  

 
3. Performance Evaluation and Conclusion 

 
Integrity of three fuel rods (HT9, FC92B, and FC92N 

claddings) was evaluated using LIFE-METAL code, 
which has been developed jointly with Argonne 
National Laboratory (ANL) [1-2]. Creep correlations 
reflecting in-reactor creep test results of HT9, FC92B, 
and FC92N were developed and implemented in the 
LIFE-METAL [3]. Three criteria were adopted to 
evaluate the integrity of the fuel rods [4]. First, fuel 
maximum temperature should be lower than the solidus 
temperature of U-10Zr (1,237 °C). Second, the 
maximum strain of claddings should be lower than 1%. 
Third, cumulative damage fraction (CDF) should be 
lower than 0.05. 

Based on the methodology and criteria explained 
above, cladding CDF, cladding strain, and fuel 
centerline temperature were calculated based on the 
maximum PICT and LHGR shown in Fig. 1. Fig.2, 
Fig.3, and Fig.4 show the calculated cladding CDF, 
cladding strain, and fuel centerline temperature cladding 
depending on burnup, respectively. The maximum CDF 
of the fuel rods with HT9, FC92B, and FC92N 
claddings were 1.81·10-5, 1.61·10-5, and 1.66·10-5, 
respectively. The maximum cladding strains of the fuel 
rods with HT9, FC92B, and FC92N claddings were 
0.16, 0.11, and 0.10, respectively. The maximum fuel 
temperatures of the fuel rods with HT9, FC92B, and 
FC92N claddings were 802, 799, and 802 °C, 
respectively. Even though we used the maximum PICT 
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for the fuel performance analysis, the calculated values 
were much lower than the criteria. Hence it can be 
concluded that the fuel rods retain their mechanical 
integrity. Integrity of fuel rods was also confirmed 
through non-destructive examination for fuel rods which 
reached 7 at.% burn-up. Further extended irradiation  
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Fig. 2. Cladding CDF of the fuel rods irradiated in BOR-60 to 
7 at.% burnup. 
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Fig. 3. Cladding strain of the fuel rods irradiated in BOR-60 
to 7 at.% burnup. 
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Fig. 4. Fuel maximum temperatures of the fuel rods irradiated 
in BOR-60 to 7 at.% burnup. 

 

tests to the target burnup of 10 at.% will be completed 
by the end of 2024. 
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