
Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 20-21, 2022 

 
 

Graph Database Design of Control Logic Drawings 
 

Dongil Lee a*, Donghun LEE b 
aKHNP, Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon, 34101, South Korea 

bHUPEC. Co., Ltd., #1810, 10, Dongtan-daero 21-gil, Hwaseong-si, Gyeonggi-do, 18471, South Korea 
*Corresponding author: diturtle@khnp.co.kr 

 
1. Introduction 

 
Control logic drawings used to control Nuclear 

Power Plants (NPPs) exist in various forms, such as 
hardcopy and files (pdf, jpg, tif files, etc.). It was 
necessary to understand the meaning of symbols and 
understand the flow of signals along lines for 
verification of drawings. 

However, there are clearly elements of uncertainty in 
human work. Uncertainty causes logic errors, which can 
have catastrophic consequences for the plant. 

To reduce fatal mistakes, verified procedures and 
validated results through software Verification and 
Verification (V&V). So far, verification has been done 
manually. 

We have been carrying out the task since April 2020 
to verify various types of control logic drawings used in 
nuclear power plants. In this project, Control Logic 
Diagram (CLD) and Vendor Logic Diagram (VLD) are 
recognized based on Artificial Intelligence (AI) 
technology and reproduced as normal vector drawings 
(Auto CAD format), and normal vector drawings are 
tested and verified [1]. 

When a drawing is recognized and a normal vector 
drawing is produced, the drawing and all symbols, lines, 
and characters in the drawing should be databased for 
the test of the drawing. 

The most used database is the Relationship DataBase 
(RDB), but it requires a very large database and a large 
amount of computation to express many symbols, lines, 
characters, and relationships. To overcome this 
limitation, we try to exceed the limitation of RDB by 
expressing the drawing using the Graph Database [2]. 

In addition, compatibility was maintained by using 
eXtensible Markup Language (XML) for Graph 
Database for compatibility with widely used RDB. 

 
2. Why Neo4j 

 
In this section, Graph Database Neo4j used to 

express drawings and useful for expressing control 
logic drawings are explained. 

 
2.1 Use of Graph Database Neo4j 
 

RDBs have been and will continue to be used in 
many fields and industries to date. However, there is a 
lot of loads due to the increasing amount of data and 
operations such as joins in query statements. Efforts are 
being made in many fields to solve it, and it has been 
widely used even with a lot of loads. 

For example, if a result is to be found through several 
different symbols and drawings in an input signal, RDB 
must go through numerous joins such as symbols, 
drawings, and connection tables. In addition, since the 
same symbols exist in the drawings, it is difficult to 
normalize the DB. However, in the graph DB, there is 
no join operation, only Relationships are checked, and 
unnecessary operations and data are not referenced. 

In this project, changes in drawings must be reflected 
in real time, so the computational load of the DB should 
not be increased by joining tables and searching for 
unnecessary data. 

 
2.2 Data Modeling in Neo4j 
 

Neo4j has four (4) basic data structures: Nodes, 
Relationships, Labels, and Properties. (1) Nodes means 
general object information. (2) Relationships are like 
the Join command in RDB and have a type, a start node, 
an end node, and a direction. (3) Properties has 
properties (name/value) of Node and Relationship. (4) 
Labels are a method of classifying nodes [3]. 
 
2.3 Cyper 
 

Structured Query Language (SQL) used in RDB uses 
explicit query language, but Neo4j uses Cyper, a 
declarative query language that even beginners can use 
easily. 

In order to obtain the desired data from the RDB, it is 
necessary to understand the structure of the database 
(structure, relationship of the table). However, to obtain 
the data desired by the user by using the declarative 
query language, it is easy to find it without 
understanding all the structure of the database. 

 
3. Construct control logic drawing with Neo4j 

 
3.1 Neo4j Database Configuration 

 
Database configuration is defined to include “project 

work area, drawings, drawing settings, symbols, symbol 
settings, symbol-symbol association, and drawing 
association”. (See Fig. 1.) 

 



Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 20-21, 2022 

 
 

 
Fig. 1. Neo4j based database configuration 

 
 

Table I: Database Class 

Class Description 
Project Project properties  

WorkClass Work area of each project 
RevClass Revision division 
Setting Drawing and symbol setting by Rev. 
border Drawing files belonging to Settings 

Drawing RevClass, sub-drawing information 
DwgNode Node connected to Drawing 

Symbol Symbols and connected to Drawing 
SymbolNode Nodes connected to Symbols 

ConnectionLine Nodes to nodes connection 
(Between SymbolNode, DwgNode) 

User User information  
Simulation Simulation information 
 

3.2 Neo4j Configuration of Control Logic Drawing 
 
To compose a control logic drawing in Neo4j, it 

consists of “drawing information, symbol information, 
symbol properties, drawing connection information, 
drawing symbol connection information, and symbol 
connection information”. (See Fig. 2.) 

 

도면연결정보

도면 정보

Symbol연결정보

Symbol 정보

DBto XML

 

Fig. 2. Drawing and Neo4j connection structure 
 

3.3 Database Compatibility using XML 
 
The purpose of XML in the implemented database is 

to convert data, store objects, and write internal data of 
programs. 

 

 

Fig. 3. Storing drawing information in XML 
 

Table I: XML Elements 

Elements Description 
DrawingDTO Drawing information 
SymbolDTO Symbol configuration 

DrawingNodeDTO Node connected to drawing 
ConnectionLineDTO Nodes to nodes connection 

 
4. Conclusions 

 
To test control logic drawings of general hardcopy 

and files (pdf, tig, jpg, etc.), it is essential to configure a 
database for computerization of control logic drawings. 

This is because the logic must work by giving life to 
a dead drawing. For the control logic drawing to come 
alive, it is essential to configure an appropriate database 
for the control logic drawing. 

In one drawing, there are as few as thirty (30) 
symbols and as many as thousands of symbols, and the 
drawings are linked from one to several thousand. 

When a control logic drawing with direction, 
properties, and many connections is implemented with a 
RDB, the load increases when the amount of data of 
calculations and symbols increases. Therefore, an 
appropriate graphic database should be applied. 
 

REFERENCES 
 

[1] D. I. LEE, Development of Digital Control Logic’s 
Verification Technology based on Artificial Intelligence, 
Conference on Information and Control Systems, p397-
398 ,2020 
[2] Miller, Justin J., Graph database applications and concepts 
with Neo4j, Proceedings of the southern association for 
information systems conference, Atlanta, GA, USA. Vol. 
2324. No. 36. 2013. 
[3] Baton, Jerome, Learning Neo4j 3.x - Second Edition: 
Effective data modeling, performance tuning and data 
visualizat, chapter 3, 2017 


