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1. Introduction 

 
Austenitic Stainless Steels (ASSs) which have high 

strength and ductility are the main material of Reactor 

Vessel Internals (RVIs). RVIs are degraded by the 

extreme environment and neutron irradiation. From 

microstructure defects, mechanical properties are 

changed. Irradiated material property was studied by 

Mecking-Kocks (M-K) with parametric equations [1]. 

Experimental studies have several limitations for 

investigating mechanical properties due to producing of 

irradiated specimen and irradiation pollution. Therefore, 

the nanoindentation test has been used to alternative 

procedure for evaluate mechanical properties. 

A Finite Element Analysis (FEA) was conducted to 

observe irradiated material behavior from microstructure 

characters for As-Received (AR) and irradiated 304 

ASSs [2]. To match with the experiment, irradiation 

material model parameters must be calibrated. Using 

machine learning reduces time, effort, and error [3]. 

In this study, material properties under AR and 

irradiated condition were simulated with the M-K theory 

and FEA. Parameters were calibrated by using machine 

learning comparing FEA and the experiment data. From 

the calibration result, the irradiation dose of each depth 

was analyzed to confirm the mechanical property effect 

from a depth dependency of irradiation level. 

 

2. Microstructure Analysis 

 

2.1 Review of material constitutive model 

 

The dislocation-based flow stress (𝜎𝑓 ) is calculated 

from the shear stress (𝜏𝑓) with Taylor factor as following 

in Eq. (1). The relation of the flow stress on dislocation 

density is derived from the following Eqs. (2) and (3). 

 
𝜎𝑓 = 𝑀𝜏   (1) 
𝜎𝑓 = 𝜎0 + 𝛼𝜇𝑀𝑏√𝜌0 + 𝜌𝐷𝐿 (2) 
𝜏0 = 𝛼𝜇𝑏√𝜌0 𝜏𝐷𝐿 = 𝛼𝐷𝐿𝜇𝑏√𝜌𝐷𝐿 (3) 

 

Where, 𝑏 is the magnitude of the Burgers vector, 𝜌 is 

the dislocation density, 𝛼 is the strengthening factor of 

an obstacle, 𝜇 is the shear modulus, and 𝜎0,  𝜏0 are the 

stress of initial dislocation network. 

Since Dislocation Loop (DL) was considered as the 

major irradiation defects, the quadratic sum was applied 

to represent in Eq. (4) [4]. 

 

𝜏𝑡𝑜𝑡𝑎𝑙 = √(𝜏0)2 + (𝜏𝐷𝐿)2 (4) 

From M-K theory, the evolution of dislocation density 

comes from production and annihilation of dislocations 

[5]. The production is related to the mean free path (λ). 

The annihilation is from the dynamic recovery (𝑓). The 

microstructure-based plasticity behavior was used by a 

user subroutine UHARD as Eqs. (1) - (5). 
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where, 𝑑  is grain size, 𝑘  is product constant, 𝑓  is 

annihilation constant, 𝛾 is shear strain. 

 

2.2 Nanoindentation model 

  

A numerical model of spherical nanoindentation 

simulation was created using the FEA package 

(ABAQUS) details in Figure. 1. A region between the 

indenter and specimen was refined mesh and was applied 

to 0.2 of friction coefficient. 

 

 
Fig. 1. FE model 

 

3. Calibration Supported by Machine Learning 

 

3.1 Data collection and preprocessing 

 

Three parameters (a, f, k) were considered in each dose. 

Total of 144 analyses were performed for resulting Strain 

Energy (SE) and the maximum load (Pmax) of load-depth 

curve. Among them, 48 data were randomly sampled as 

input dataset (a, f, k) and target data (SE, Pmax) for 

training. The most optimum dataset was selected.  

 

3.2 Ridge regression  

 

Ridge Regression (RR) is an algorithm for regulating 

over or under-fitting of model and minimizing difference 

between each result of FEA and RR prediction. Using 
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this algorithm, optimized parameters were drawn out for 

calibration in AR and irradiated condition.  
Two performances, Mean Absolute Percentage Error 

(MAPE) and R-squared (𝑅2), were used to evaluate the 

accuracy of ridge regressions in Table I. Where �̂�𝑖 is the 

prediction value, 𝑦𝑖  is the true value, 𝑛 is the number 

of samples, and �̅�𝑖 is the average of 𝑦𝑖 . 

 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

�̂�𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1   (6) 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�𝑖)𝑛
𝑖=1

  (7) 

 

Table I: Performance evaluation 

Variables Performance AR 10 dpa 

Strain 

Energy 

MAPE (%) 0.93 1.89 

𝑅2 0.96 0.94 

Maximum 

Load 

MAPE (%) 1.83 1.98 

𝑅2 0.93 0.98 

 

4. Assessment of Analysis Results 

 

4.1 Calibration results in AR and irradiated conditions 

 

The calibration result is compared with experiment with 

AR and 10 dpa in Figure. 2 [6] and Table II. FEA results 

from the maximum load were 18.5% and 18.9% higher 

than experiment. 

 

 
Fig. 2. Load-Depth Curve of each condition 

 

Table II: Calibrated Parameters [1, 2, 4] 

Variables Values Variables Values 

E (GPa) 200 d (mm) 48×10-3 

Poisson’s 

ratio (υ) 
0.3 𝛼  0.1 

𝜎0 (MPa) 250 k 3.16×10-2 

𝜌0(mm-2) 1.0×106 f 3.16×10-2 

M 3.06 𝛼𝐷𝐿 0.2 

μ (MPa) 77,000 kDL 3.16×10-2 

b (mm) 2.54×10-7 fDL 3.16×10-2 

 

4.2 Depth dependency in nanoindentation analysis 

 

The irradiation effect decreases as proton penetrates a 

test specimen. FEA which has different dose at several 

depth and 5 µm indentation was performed in Figure. 3. 

The result of depth dependency is less than 10 dpa and 

more than AR.  

 
Fig. 3. Load-Depth Curve of depth dependency 

 

5. Conclusions 

 

In this study, microscale analyses and calibration with 

machine learning were conducted to investigate 

irradiation effects with depth dependences on ASSs. 

 

(1) The differences in the predicted target dataset from 

RR and analysis results were derived as low as 2% 

under AR and irradiation condition. The 𝑅2 value 

of more than 0.9 indicates higher prediction 

accuracy. 

(2) Compared FEA and experiment at AR and 

irradiation effects, there were differences of 18.5% 

and 18.9% from the maximum load, respectively. 

From these results, it is necessary to study 

convergence of machine learning. 

(3) The depth effect of irradiation was predicted from 

the FEA with each dose. The depth dependency of 

irradiation was observed from comparing of result. 
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