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1. Introduction 

 

Spent Nuclear Fuel (SNF) requires regardful 

management in preparation for high temperature and 

radioactivity causing material embrittlement factors such 

as hydrogen charging and irradiation. etc. Integrity of 

practical cladding could be estimated against 

embrittlement effect combined with comprehensive 

damage conditions before permanent disposal. 

In previous studies, embrittlement effects of typical 

cladding materials such as Zircaloy-2 and Zircaloy-4 

mainly have been evaluated using experimental approach. 

Furthermore, evaluation of an advanced zirconium alloy 

(ZIRLO™) is in the early stage using some of the 

practical cladding extracted from the SNF pool [1]. 

Recently, experimental studies of mechanical behavior 

under limitations have been supplemented applying 

machine learning model to find complex correlations [2]. 

In this study, mechanical properties of ZIRLO™ 

cladding under embrittlement conditions were predicted 

based on a machine learning technique. In order to 

construct Data Base (DB), axial tensile test data [3, 4] 

and virtual data derived using empirical correlations 

were organized and preprocessed [5]. Predicted 

properties were compared with empirical test results and 

analyzed using coefficient of determination. 

 

2. DB Construction 

 

2.1 Data organization 

 

The axial tensile test data of 79 Zircaloy-4 and 68 

ZIRLO™ specimens under different temperatures (T), 

hydrogen concentrations ([H]), and hoop stress (𝜎ℎ) were 

collected. The test conditions are summarized in Table I 

and specimens are described in Figure 1 [3]. 

 
Table I: Tensile test conditions 

Material T (℃) 𝜎ℎ (MPa) [H] (wppm) 

Zircaloy-4 25, 100, 

200 

0, 90, 

120,150 

0~845.8 

ZIRLO™ 0~907.9 
 

 
Fig. 1. Schematic of the tensile specimen  

 

Experimental data are insufficient to learn the 

correlation of the parameters with irradiation 

environment information. Therefore, virtual specimen 

data were produced through the PNNL-17700 model [4]. 
The model describes the stress-strain constitutive 

relation of irradiated Zircaloy-4 cladding using Hook’s 

law and power law. These are defined as: 

 

𝜎 =  𝐸(𝑇, 𝛷) ∙ 𝜀                                                       (1) 
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Here, 𝜎 is stress (Pa), 𝜀 is strain (mm/mm), YS is Yield 

Strength (Pa), E is Elastic modulus (Pa), K is Strength 

coefficient (Pa) and 𝜀̇  is strain rate(s-1). E, K, Strain 

hardening component (n), and strain rate exponent (m) 

are functions of T and neutron fluence (𝛷). 

Based on the above function, 210 virtual specimen 

data were generated under different T in the range of 25-

200°C, [H] in the range of 0-1000wppm, and 𝛷 in the 

range of 0-15× 10−25n/m2. Values of 𝛷 were considered 

in the relationship with [H] and burnup rate [4, 6]. Figure 

2 shows the stress-strain curve generated by the PNNL-

17700 model. UE is Uniform Elongation, UEp is 

Uniform plastic Elongation, and UTS is Ultimate Tensile 

Strength. 

 

 
Fig. 2. Stress-strain curve used in this study 

 

Furthermore, four axial tensile test data of irradiated 

ZIRLO™ specimens [5] were added to the DB. The 

number of data is relatively small compared to the 

experimental and virtual ones. Although, it will improve 

the ability to identify tensors in the model. 

 

2.2 Data preprocessing 
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For accuracy of prediction, data preprocessing is 

necessary. The stress-strain curves were refined using 

linear interpolation with increasing strain by 

0.001mm/mm. The input variable 𝜀𝑛 were added for the 

tendency of pow law on the model. The range of 𝑛 was 

created in 0.025 units from 0.14 to 0.19. By substitute 0 

and 1 to ZIRLO™ and Zircaloy-4, the model can learn 

the difference between the two. 

 
3. Machine Learning 

 
3.1 Model construction and training 
 

Deep-Neural-Network (DNN) is mainly used for 
classification or numerical prediction by learning 
nonlinear relationships of parameters. The DNN model 
was constructed based on open source [7], 26 nodes in 
the first hidden layer, 52 nodes in the second hidden layer, 
0.3 in the dropout ratio layer, and 1 node in the output 
layer. The number of nodes was determined through trial 
and error. Activation function determining the output of 
each node was set to a ‘Relu’ function in the hidden 
layers and a ‘linear’ function in the output layer. The loss 
function presents difference between real value and 
predicted output value using mean squared error. ‘Adam’ 
was adopted as the optimizer updating the weights of 
each layer. Input variables were composed of T, [H], 𝛷, 
type of material, 𝜀  and 𝜀𝑛 {n:0.14~0.19}, the output 
variable was 𝜎. Hoop stress was excluded from the DB 
because of insensitivity under the tensile test conditions 
[3]. Figure 3 shows the training algorithm of the model. 
 

 
Fig. 3. Training algorithm of the DNN model 

 

3.2 Assessment 

 

Stress values under the conditions summarized in 

Table II were predicted up to UE by DNN model. The 

results were compared with two irradiated ZIRLO™ 

specimens not included in learned data, as shown in 

Figure 4. R-squared (𝑅𝟐 ) of ZIRLO-1 is 0.9919 and 

ZIRLO-2 is 0.9884. Additionally, YS and UTS were 

compared. YS was calculated by 0.2% offset method, and 

UTS was set to stress value at UE, and the detailed results 

are presented in Table Ⅲ. 

 
Table Ⅱ: Information of ZIRLO™ tensile test 

Specimen 
T 

(°C) 
[H] 

(wppm) 
𝛷 

(×10-25n/m2) 
UE 
(%) 

ZIRLO-1 25 279 7.79 4.4 

ZIRLO-2 200 47 5.47 3.9 

  
Fig. 4. Comparison of test and prediction data 

 

Table Ⅲ: Summary of empirical and estimated values 

Specimen 

Property Test DNN Differ-

ence 

(%) 
(MPa) 

ZIRLO-1 
YS 847 831 1.89 

UTS 1,038 1,040 0.17 

ZIRLO-2 
YS 721 711 1.39 

UTS 873 915 4.59 
 

4. Conclusions 

 

In this study, DNN, one of the machine learning 

methods, was applied to predict the mechanical 

properties of the ZIRLO™ cladding in an embrittlement 

environment. In the subsequent, stress-strain curves were 

predicted and compared to validation data. 

 

(1)  As a result of predicting two specimens, values of 

𝑅2  were about 0.9919 and 0.9884, which can 

provide a reasonable estimation. 

 

(2)  Both of the maximum difference of YS and UTS 

values between experiments and predictions were 

less than 5% for ZIRLO™. 
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