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1. Introduction 

 
Since the Fukushima accident, the importance of 

research on nuclear power plant accidents and mitigation 

strategies has been emphasized globally. One of the 

research areas is evaluating the effectiveness of existing 

mitigation strategies for responding to various accident 

scenarios. The effectiveness of these strategies was 

measured with important indicators such as temperature 

and pressure inside a nuclear power plant [1-2]. The 

accident scenarios used in these analyses are generally 

produced from the probabilistic safety analysis (PSA), 

and pre-defined event trees. The accident sequences are 

evaluated by simplifying them to a level that can be 

evaluated at the level of currently available knowledge 

and tools. Even for accidents with the same sequence, 

analysis of detailed accident progress or unexpected 

complex events caused by differences in the entry time 

of a particular event is limited by conventional methods. 

The PSA event tree, as seen in Figure 1, only identifies 

the accident sequence by branching a series of events that 

occur after a certain component fails. It should be noticed 

that the event tree does not include the time of 

component failure as variable. However, physically the 

propagation of an accident even for the same accident 

scenario, varies depending on the time of failure and 

sequence of failures [3]. It is anticipated that in the case 

of multiple failure accidents, both the timing of 

component failure and the beginning state of the accident 

will play a significant role in determining how the 

accident develops and manifests itself. 

 

 

Figure.1 PSA Event Tree in LOCCW Accident [4] 

In the previous study [5], the prediction of physical 

values in the loss of component cooling water (LOCCW) 

accident via an Artificial Neuron Network (ANN) is 

implemented. To simulate the progression of the whole 

accident, it should be possible to predict the status of the 

next state in time through the information of the initial 

state and to continuously update the state.  

In this study, it is evaluated whether an accident 

scenario simulation is possible with continuous 

prediction using ANN. The accuracy of the trained 

network and the similarity of the accident prediction with 

the data generated from MAAP are evaluated. 

 

2. Methods 

 

This study uses LOCCW accident scenario data 

generated from MAAP as learning data. A double failure 

accident of reactor coolant pump (RCP) seal loss of 

coolant accident (LOCA) and high pressure injection 

(HPI) failure was simulated. The predictive ability of 

ANNs learned from accident data of RCP seal LOCA and 

random HPI failure in time following a log-normal 

distribution generated from MAAP was evaluated. 

 

Figure.2 Configuration Diagram of ANN 

The artificial neural network used in this study is a 

Multi-Layer Perceptron (MLP). The input layer that 

receives the input information and the output layer that 

produces the last information are connected via hidden 

layer. As can be seen in Figure.2, the input-layer consists 

of primary system pressure, ex-vessel pressure, Core 

Exit Temperature (CET), water level of Steam Generator 

(SG) 1, water level of SG2, accident progression time, 

RCP failure time, and HPI failure time. It is trained to 

predict the primary system pressure, ex-vessel pressure, 

Core Exit Temperature (CET), Steam Generator (SG) 1, 

and SG2 water levels after one hour with 8 input 

information. The above information is part of the 
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information that can be checked at the nuclear power 

plant control facility in the event of an accident. 

To this end, the accident data with 5-minute intervals 

is obtained from MAAP and is processed to be used as 

training data for supervised learning. All data from the 

start of the accident to 72 hours are coupled as a pair with 

1-hour interval and used as input and answer for the 

supervised learning. As shown in Figure.2, the 

supervised learning ANN model is trained to produce the 

physical values after 1 hour when the physical values at 

a specific point in time are provided as input. At this time, 

the root mean square error of the coupled MAAP data 

and the predicted output is set as the loss, and the training 

is conducted in the direction of decreasing the loss. For 

the optimization, Adam optimizer was used. The Relu 

function was used as the activation function of the input 

layer and the hidden layer. The activation function of the 

output layer was the sigmoid function. The output of the 

ANN is normalized to have a value between 0 and 1, so 

that the output can be predicted stably even if the output 

of the ANN is used as an input for the next prediction. 

Additionally, the accident data was used for 

developing a front model when the data is before 36 

hours after the accident, and the remaining data was used 

for developing a back model. Thus, two independent 

ANNs were trained to simulate the 72-hour accident 

process as a whole. This approach was useful, since the 

accident data before the secondary cooling water is 

exhausted has a big difference from the pattern after the 

water was depleted. Therefore, the two data sets were 

separated and used for training the front model and the 

back model, respectively.  

To evaluate the learned ANN, accuracy evaluation and 

plane accuracy evaluation using cosine similarity were 

performed. In this study, the ANN was trained using 70% 

of the data set, and the accuracy was evaluated using the 

30% data set not used for the training, which is commo 

m data split ration in the computer science field.  

For 8 input information xi at a specific point in time 

existing in data set X having a total of N input sets, 

yMAAP,i , the correct answer of the prediction after 1 hour, 

already exists from MAAP simulation. In this case, the 

predicted value ypred,i can be obtained when using xi as 

input through ANN. 

 
𝐴𝑁𝑁(𝑥𝑖) =  𝑦𝑝𝑟𝑒𝑑,𝑖                                                               (𝑒𝑞. 1) 

A new function f was defined that returns 1 when the 

predicted value 𝐲𝐩𝐫𝐞𝐝,𝐢 has an actual error of 𝐲𝐌𝐀𝐀𝐏,𝐢  less 

than or equal to 0.05, otherwise 0. 

𝒇(𝒙𝒊) = {
𝟏 𝒊𝒇 ‖𝒚𝒑𝒓𝒆𝒅,𝒊 − 𝒚𝑴𝑨𝑨𝑷,𝒊‖ < 𝟎. 𝟎𝟓

𝟎 𝒆𝒍𝒔𝒆
               (𝒆𝒒. 𝟐) 

Accuracy is defined as the average value of 𝐟(𝐱𝐢) for all 

𝐱𝐢 in the dataset. 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝜮𝒊=𝟏
𝑵 (

𝒇(𝒙𝒊)

𝑵
)

× 𝟏𝟎𝟎 (%)                           (𝒆𝒒. 𝟑) 

  The accuracy test can show the predictive capability of 

surrogate model for unit time (i.e. 1 hour) simulation. 

However, the similarity between the 72-hour accident 

progression using the surrogate model and the 

calculation result of the MAAP code cannot be evaluated 

with the accuracy test. Therefore, the cosine similarity 

test was next used. The cosine similarity test is a method 

to evaluate the similarity of two vectors regardless of 

their sizes. It is mainly used to evaluate the similarity of 

character strings or image data. 

As shown in Figure.3, if the accident is simulated with 

the surrogate model, a plane can be created for the 

accident time and HPI failure time for each output. 

MAAP data can also create a plane for the accident time 

and HPI failure time for the entire data set. At this time, 

the plane of the surrogate model is located in the 

normalized space, and the plane of the MAAP data is 

located in the non-normalized space. To evaluate the 

similarity between the surrogate model and the MAAP 

data, the relative position and pattern of this plane should 

be similar, not the absolute distance. Therefore, as shown 

in Eq. 4, cosine similarity was calculated by treating 

variables having the same accident time and HPI failure 

in both planes as vectors. The plane similarity of the 

entire model was calculated as the average of these 

cosine similarities (Eq. 5). Accuracy and plane accuracy 

were evaluated for ANN of 2, 3, 4, layered structures, 

respectively, and the difference between each ANN 

structure and its index was evaluated. 

 

Figure.3 Conceptual Diagram of Cosine Similarity 

cos(𝜃) =
𝑀𝐴𝐴𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖𝑀𝐴𝐴𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖‖𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
      (eq. 4) 

 

 Plane accuracy =
Σ𝑡=0
𝑇 Σi=0

N (cos(𝜃𝑖,𝑡))

𝑁𝑇
       (eq. 5) 

 

3. Results & Discussions 

 

The accuracy of ANN is shown in Table.1. Overall, the 

accuracy of the test set shows that the accuracies of the 

ANNs for training set are high. This is expected by 

training the front model and the back model by dividing 

the data in half while maintaining the size of the ANN. 

Since the accuracy of the test set does not differ 
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significantly from the accuracy of the training set, it is 

difficult to determine if an overfitting had occurred. All 

types of ANN succeeded in stably predicting 72 hours 

continuously, and based on this, it was possible to obtain 

an output surface with respect to HPI failure time and 

accident progression time. 

  

Table.1 Accuracy of ANN 

 
In order to evaluate the accuracy of predicting the 

entire accident scenario of the MAAP data and the entire 

accident scenario through ANN, the plane accuracy test 

was defined previously, and the results are shown in 

Table 2. 

 

Table.2 Plane Accuracy of ANN 

 
 

The water levels of SGs have a relatively simple 

surface shape and therefore showed high plane accuracy. 

The top of Fig.4 is the water level of SG1 from MAAP 

data, and the bottom of Fig.4 is the water level of SG1 of 

the 4 layered ANN model with the highest plane 

accuracy. It can be seen that the predicted values of the 

surrogate model are very similar with the MAAP data.  

Also, the top of Fig. 5 is the ex-vessel pressure of 

MAAP data, and the bottom of Fig. 5 is the ex-vessel 

pressure of the 3 layered ANN model. It was confirmed 

that the similarity was high when the plane accuracy was 

high even when the plane has more complicated shape 

than the SGs’ water level. 

The top of Fig. 6 is the surface of primary pressure 

from the MAAP data, and the bottom of Fig. 6 is the 

surface of the primary pressure predicted with the 3 

layered ANN model. From the output with the lowest 

plane accuracy, it was confirmed that the pressure in the 

early 0 to 20 hours of the accident was predicted to be 

higher than the MAAP data. However, the pressure peak 

that occurs with RPV failure was predicted correctly 

between the low-pressure section in the midst of the 

accident between 50 and 60 hours. It succeeded in 

predicting the peak occurrence but failed to predict the 

exact value. In particular, concerning HPI failure time, 

the pressure of 0 to 20 hours in the first half of the 

accident is not very sensitive, so this needs to be further 

refined. 

Figure.4 Steam Generator 1 Water Level Surface of 

MAAP(Top), 4-L ANN (Bottom) 

Figure.5 Ex-vessel Pressure Surface of 

MAAP(Top), 4-L ANN (Bottom) 
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Figure.6 Primary Pressure Surface of 

MAAP(Top), 4-L ANN (Bottom) 

 

4. Conclusions & Further Works 

 

From this study, it was possible to show the possibility 

of simulating large-scale long-term accidents such as 

severe accidents in a nuclear power plant with ANN. The 

existing MAAP code is capable of simulating a severe 

accident but it takes a long time to simulate a single 

accident, thus it requires a lot of computational resources 

for repeated calculations. However, the simplified 

accident progression can be modeled with high speed if 

the supervised learning is applied. 

However, it is necessary to improve the accuracy of 

accident simulation with ANN. It is expected that such 

accuracy can be improved further by using ANN 

specialized for time series data such as LSTM algorithm. 

Additionally, adjusting the time step of the surrogate 

model can also improve the results. The surrogate model 

used in this study simplified the 72-hour accident 

scenario and predicted the parameters for every 1-hour 

interval. However, as this time step becomes smaller, the 

authors predict that the simulation model can become 

more accurate. 
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