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1. Introduction 

 
The International Atomic Energy Agency (IAEA) 

requires various types of safeguards to prevent nuclear 
proliferation and the diversion of nuclear materials [1]. 
Nuclear safeguards consist of containment, surveillance, 
accountancy and the inspection of nuclear materials [2]. 
Through the accountancy and the inspection, IAEA can 
identify whether nuclear material has been diverted and 
whether the real quantities of nuclear material 
correspond with the reported data. Typically, the 
quantity verification is performed in the spent fuel pool 
before the spent fuel is permanently disposed or before 
they become difficult-to-access. The safeguard criterion 
is when half the fuel in a fuel assembly is unaccounted 
for. Various types of NDA detectors are available to 
satisfy this criterion but the function of most of them is 
limited to identify the presence of the diversion [3]. 
Machine learning techniques can help these NDA 
detectors to know how much and where the fuel 
diversion occurred.  Previous research at SCK CEN 
Belgian Nuclear Research Center examined typical 
machine learning algorithms such as the decision-tree or 
k-nearest neighbors with the Fork detector(FDET), Self-
Indication neutron resonance densitometry(SINRD), 
and Partial defect tester(PDET) to classify the level of 
fuel diversion [4]. It was shown that the machine 
learning algorithms can be applied to improve the 
safeguards capabilities. 

To overcome the limitations of existing NDA 
techniques, a scintillator based partial defect 
detector(SPDD) is under development in KAIST [5]. It 
measures the gamma ray emitted from the fission 
products in the spent fuel. It decides the presence of 
partial defect with identifying decreases of signal based 
on the estimated signal from the normal spent fuel with 
uniformly distributed sensor pixels over the fuel 
assembly. To be competitive with current NDA 
techniques used for safeguards, this detector needs to be 
more versatile, precise and autonomous detector that 
does not even require any engagement of the inspectors. 
Hence, the applicability of the machine learning 
algorithms was assessed with the SPDD. The optimal 
classification model was found among five supervised 
learning algorithms. The prediction accuracy was 
evaluated based on the measurement with randomly 
distributed partial defect scenarios. 
 
 

2. Methods 
 

The SPDD measures gamma rays from the spent fuel 
and it was designed to be inserted into the guide tubes 
of the fuel assembly which is very similar to the concept 
of the PDET [6]. However, it has fundamental limitation 
that the detection capability of the SPDD is highly 
dependent on the types of fuel assemblies because they 
have different distribution of the guide tubes. Thus, the 
location of the sensor pixel is changed from the center 
of the guide tube to above the fuel assembly. Figure 1 
shows the optimized distribution of the sensor pixels in 
the Westinghouse 17x17 fuel assembly.  

To apply the classification algorithms, large amount 
of measurement data needs to be obtained for the 
training and test of the model. MCNPX was used for the 
simulation of the spent fuel inspection by the SPDD [7]. 
The gamma source such as the intensity and the energy 
spectrum of the spent nuclear fuel was generated with 
using the ORIGAMI module of the SCALE code [8]. 
The target fuel assembly type was assumed as standard 
Westinghouse 17x17 because the design of SPDD was 
optimized with it. The operation histories such as the 
initial enrichment, discharge burnup, and the cooling 
time in the pool were assumed as the averaged value of 
the real 17x17 spent fuels stored in South Korea as 
shown in table 1. The fuel diversion scenarios for the 
training and test data were based on the randomly 
distributed dummy rods. A dummy rod is assumed to be 
a fresh fuel or a rod filled with SS304.  

Five supervised classification models were used. For 
the classification of the ratio of the defects, multinomial 
Logistic Regression, Support Vector Machine, k-
Nearest Neighbor, Naïve Bayes, and Decision Tree 
models were utilized. The Scikit-learn library from the 
Python framework was used to apply the models to 
obtained data [9]. The input parameters are the 
estimated gamma count rates from the sensor pixels. 
There are 24 and 25 input features which can be 
obtained from the measurement for the original and 
optimized design. The target class to classify is the ratio 
of number of defects to the entire number of fuel rods in 
a single fuel assembly. The interval of each classes, 
number of data and the label is shown in table 2. 

The accuracy scores of each model was compared to 
find the optimal model with varying the forms of the 
features and classes. 
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Fig. 1. Location of the sensor pixels of SPDD in 
Westinghouse 17x17 type (left ; original, right ; optimized, 
blue ; peripheral, yellow ; central) 
 
Table. 1. Assumption of operation histories of spent fuel for 
gamma source  

Variable Range 
Initial enrichment 4.5wt% of U-235 
Discharge burnup 40GWD/MTU 

Cooling time 1 years 
 
Table. 2. Target classes for classification 

 Class 1 Class 2 
Interval 2%(0~8%) 4%(0~8%) 
Label 1, 2, 3, 4, 5 1, 2, 3 

Number of data 
for each class 100 100 

 
3. Results 

 
To find the optimal model, the accuracy score metric 

was used and compared for each model. The k-fold 
cross validation method was also used for statistical 
analysis of the accuracy. It is useful to improve the 
credibility of the accuracy when the number of the data 
is limited. The ratio of test data to total dataset was 
fixed to 20%. For the classification of the 2% defect 
interval with the entire sensor pixels, except the 
Decision Tree model, other four models showed 
relatively good prediction performance as shown in 
figure 3. Because of the large number of the input 
features, the nodes and branches of tree became 
complicated. Hence, the tree model was inappropriate 
for the data obtained by the SPDD. The accuracies of 
other four model was significantly improved by the 
design optimization because the sensor pixels were 
more uniformly deployed over the fuel assembly. When 
the interval of each class become 4% of defect, the 
overall accuracies of five models were increased as 
shown in figure 4. It was shown that the 4% of defect 
can be easily classified even with the original design of 
SPDD. With the data obtained by the optimized design, 
the accuracy reached 1 with the multinomial LR, SVM 
and the Naive Bayes models. The accuracy scores were 
also analyzed with varying the number of input features. 
When only the peripheral sensors were used, the overall 
accuracies were slightly decreased compared to those 
obtained with the entire sensor pixels. However, the 

four models except the Decision Tree showed still quite 
good performance with the optimized design. When 
only nine central sensor pixels were used, the accuracies 
were significantly decreased compared to those obtained 
with the entire or peripheral sensor pixels. Hence, the 
peripheral sensor pixels are relatively more important 
than those located in the central region.   
 

 
Fig. 3. Accuracy scores for each model with Class 1 and entire 
sensor pixels (left ; original, right ; optimized) 
 

 
Fig. 4. Accuracy scores for each model with Class 2 and entire 
sensor pixels (left ; original, right ; optimized) 
 

 
Fig. 5. Accuracy scores for each model with Class 1 and 
peripheral sensor pixels (left ; original, right ; optimized) 
 

 
Fig. 6. Accuracy scores for each model with Class 1 and 
central sensor pixels (left ; original, right ; optimized) 
 

4. Conclusions 
 

To develop an autonomous partial defect detector, 
typical supervised learning algorithms were applied to 
predict the presence and the degree of partial defects. It 
was shown that 2% level of defect can be classified with 
using the classification models. With the optimized 
design of SPDD, four models(multinomial LR, SVM, 
kNN, and gaussian NB) show more than 95% of 
prediction accuracies. To predict not even the presence 
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and the degree of the partial defect but also the 
distribution and exact location of the defect, deep 
learning algorithms such as CNN or GAN will be 
applied in further research.   
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