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1. Introduction 

 

Nuclear power plants (NPPs) widely employ 

automated systems to improve efficiency and safety. For 

instance, actuation signals of safety systems are 

automatically generated by a reactor protection system 

when the monitored parameters reach predefined 

thresholds. Proportional-integral-differential controllers 

(PID) controllers or controllers that combine two out of 

three types of controllers (e.g., proportional-integral 

controllers) output proper device status (e.g., valve 

position) to achieve the desired state of the system [1]. 

Although these systems cover many tasks, most tasks 

are still performed by operators in the main control room 

(MCR). Especially, the automation level is relatively low 

when the plant state is dynamically changing, such as 

during startup and shutdown operations. During these 

operations, operators are required to simultaneously 

adjust the pressure, level, and temperature of the reactor 

coolant. This task is a complex and mentally taxing 

activity since it is a multi-objective and continuous 

decision-making task. Automation through rule-based 

and PID controllers is only applied for adjusting each 

target parameter independently and can be disabled 

according to a plant state.  

Recently, deep reinforcement learning (DRL) is 

automating complex, human-level tasks such as the game 

of Go and StarCraft unit control [2-4]. With the premise 

of these successes, research has been conducted to utilize 

DRL to automate tasks in the nuclear industry. Radaideh 

et. al utilized deep Q-learning, a DRL that trains a deep 

learning model to predict the expected discounted future 

reward (i.e., Q function) of each action for a given state, 

in order to optimize nuclear assembly design [5]. Kim et. 

al proposed an autonomous operating framework that 

can simultaneously combine DRL-based and rule-based 

automation for startup and shutdown operations [6]. 

Likewise, Lee et. al trained an agent that increases 

reactor power using an asynchronous advantage actor-

critic (A3C) algorithm, which is a type of DRL 

specialized for multiple training environments [7]. They 

also trained reactor coolant pressure and level controllers 

for cold shutdown operation using a soft actor-critic 

(SAC) algorithm and prioritized experience replay (PER). 

SAC and PER can optimize the experience and the 

training data for controller training, respectively. They 

also compared the performances of DRL-based and PID-

based controllers [1]. In an author’s previous work, an 

autonomous pressure controller before bubble creation 

during start-up operation was trained by a deep Q-

network [8].  

Previous research has shown a possibility of a DRL, 

however, only applied a DRL for a single-objective task.  

This study applied a DRL for a multi-objective 

continuous task, that is control of pressure, volume, and 

temperature of reactor coolant. To this end, we 

implemented the SAC algorithm. The control agent was 

designed to output the appropriate status of five devices 

according to the target pressure, level, and temperature 

of the reactor coolant.  Following this status, devices 

were continuously controlled by a proportional controller. 

As a result, a trained agent successfully controlled the 

status of the reactor coolant. 

 

2. Soft Actor-Critic 

 

Reinforcement learning is a process of optimizing an 

agent's action by using the experiences accumulated 

through the exploration of a given environment [9]. To 

explore the environment, the agent repeatably poses 

actions and receives the renewed state of the 

environment. Considering the state and the renewed one, 

the posed action is evaluated by a reward function and 

discounted summation of future rewards, as shown in Eq. 

(1), where r is a discount factor, R is a reward, and G is 

the action value. If we have an approximate action value 

function Q, as shown in Eq. (2), Eq. (1) can be rewritten 

like Eq. (3). Since Eq. (3) gives a target Q*, we can 

optimize the action value function Q. In DRL,  a deep 

neural network is utilized as an approximating function 

of action value function Q. 

 

 
DRL through optimizing the action value function has 

a limitation since the optimal action should be 

investigated by evaluating the value of every possible 

action. Actor-critic methods overcome this limitation by 

introducing two approximates. Actor-network 

approximates optimal action for a given state and the 

critic-network expects the value of action for a given 

state. 

SAC is a DRL algorithm considering action entropy. 

Actor-network in SAC predicted optimal action 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ =   𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

 Eq. (1) 

𝑄 𝑠, 𝑎 = 𝔼[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠 ,𝐴𝑡 =  𝑎] Eq. (2) 

𝐺𝑡 = 𝑅𝑡+1 +  𝛾 𝛾𝑘𝑅𝑡+𝑘+2

∞

𝑘=0

 

= 𝑅𝑡+1 +  𝛾𝐺𝑡+1 ≈ 𝑅𝑡+1 +  𝛾 max
𝑎

𝑄 𝑆𝑡+1, 𝑎 =  𝑄∗ 𝑠,𝑎   

Eq. (3) 
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distribution and optimized its trainable parameter φ to 

minimize an objective function shown in Eq. (4).  In this 

equation, 𝛼 log 𝜋𝜑 𝑎𝑡|𝑠𝑡  represents an action entropy. 

 

𝐽𝜋 𝜑 = 𝔼[[𝛼 log 𝜋𝜑 𝑎𝑡|𝑠𝑡 − 𝑄𝜃 𝑠𝑡, 𝑎𝑡 ]  Eq. (4) 

 

If the action value (i.e., 𝑄𝜃 𝑠𝑡, 𝑎𝑡 ) is expected to be a 

small value, the actor-network will be trained to 

maximize an action entropy (i.e., −𝛼 log 𝜋𝜑 𝑎𝑡|𝑠𝑡  ). It 

helps SAC agents to search an action space more 

meticulously when optimal action with a high action 

value is not founded. 

 

3. Implementation  

 

To verify the feasibility of DRL for multi-objective 

and continuous control of reactor coolant, we developed 

a training environment with an NPP simulator. A 

compact nuclear simulator (CNS), which is a simplified 

simulator that mimics the behavior of the Westinghouse 

3-loop 1000MWe plant, was modified to build multiple 

training environments. 

The SAC algorithm was implemented to train an agent 

that controls the pressure and temperature of reactor 

coolant and the level of pressurizer under cold-shutdown 

conditions. We allowed the agent to control five 

components: charging flow control valve (FV122), 

letdown flow control valve (HV142), residual heat 

removal system flow control valve (HV603), pressurized 

spray flow control valve, and proportional heater. In 

other words, the agent outputs the positions of four 

valves and heater power. Every 60 sec in simulator time, 

the agent generates the positions and power, and 

components are controlled by a proportional controller 

continuously.  

The inputs to the agent were the current values, 

deviations from the target values, variations during 60 

sec, and the target values of pressure, level, and 

temperature, respectively. These values were normalized 

between 0 to 1.  

Each episode started from the initial conditions that 

are after bubble creation during cold-shutdown to hot-

shutdown operation. The target pressure, level, and 

temperature are randomly selected between 20 ~ 35 

kg/cm2, 20 ~ 60%, and 110 ~ 170 ℃. The episode 

stopped when the pressurizer level reaches 99% or 17% 

or the pressure and temperature of reactor coolant 

infringe PT curve limitation. The maximum length of the 

episode is 21,600 sec (i.e., 6 hr). 

We constructed a reward function with three success 

rewards. If the pressure of the reactor coolant remains 

within [𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 ± 1.0 𝑘𝑔/𝑐𝑚2] , a pressure 

reward is +10. Likewise, the temperature reward and 

level reward are +10 when the temperature and level stay 

in [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  𝑡𝑎𝑟𝑔𝑒𝑡 ± 3 𝐾]  and 

[𝐿𝑒𝑣𝑒𝑙  𝑡𝑎𝑟𝑔𝑒𝑡 ± 2.0 %], respectively.  

 

 
4. Results and Discussion 

 

Figures 1 and 2 show a trend of rewards for each 

training episode. After experiencing more than 300 

episodes, the rewards for pressure and level increased, as 

shown in Fig. 2. On the other hand, the temperature 

reward increased only after experiencing more than 

4,000 episodes, as shown in Fig. 1. The total reward, that 

is a summation of these three rewards, scored a high 

value after 4,000 episodes and was maintained until the 

end of training.  

 

 
Fig. 1. Reward for each training episode. 

 

 
Fig. 2. Reward from 1st to 1000th episode. 

 

Figures 3 and 4 illustrate the control results for the 

agent after experiencing more than 7,100 episodes. In the 

case of Fig. 3, the agent is required to increase the level 

and pressure while increasing the temperature. For this, 

the agent fully opened FV122 and fully closed the 

HV142. At the same time, the power of the proportional 

heater became almost 100 % and HV603 was fully closed 

to increase temperature. After the level and pressure 

reached the target range, the agent stabilized them by 

continuously controlling  FV122, HV142, and spray flow. 

It took more than 11,000 sec to adjust the temperature in 
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the target range. After that, HV603 was slightly opened 

and spray flow was increased to stabilize the temperature. 

Fig. 3. Trend of target parameters and components states. 

Target pressure, level, and temperature are 29 kg/cm2, 

51%, and 153 ℃. 

 

In the case of Fig. 4, the agent needed to decrease the 

pressure while increasing the level and temperature. To 

this end, spray flow became almost 50% and was closed 

when the pressure arrive in the target range. After 4,000 

sec, the temperature reached the target range, and 

pressure and level were stabilized. Considering these 

control examples, the reason for the late increase in 

temperature reward shown in Fig. 1. Is that temperature 

control takes relatively longer compared to pressure and 

level. 

As shown in Figures 3 and 4, the SAC algorithm 

successfully trained the agent that can control the 

pressure, level, and temperature of reactor coolant 

simultaneously. It means that DRL can address a multi-

objective and continuous control problem.  

 

 

 

 

Fig. 4. Trend of target parameters and components states. 

Target pressure, level, and temperature are 20 kg/cm2, 

56%, and 110 ℃ 

 

5. Conclusion 

 

This research applied a SAC algorithm for multi-

objective and continuous control task, that is control of 

the pressure, level, and temperature of reactor coolant. 

As a result, the agent trained by a SAC algorithm 

successfully adjusted and stabilized target parameters. 

Therefore, this research shows the possibility of DRL for 

automating the tasks that are more complex than the task 

automated by rule-based logic and PID controller. 
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