KNS 2022 Autumn Meeting

DESIGN OF AN ANOMALY DETECTION SYSTEM FOR RESEARCH REACTOR BASED ON DATA-DRIVEN APPROACH

한국원자력연구원 인공지능응용전략실 류승형 선임연구원

CONTENTS

- Research Objectives
- Anomaly detection methodology
- Application framework
- Results and analysis

RECENT ADVANCES IN TECHNOLOGIES

Artificial Intelligence

Robot

Digital Twin

DEEP LEARNING APPLICATIONS IN INDUSTRIAL SECTOR

Anomaly detection for multivariate sensor data

(a) Illegal Traffic Flow detection

(b) Detecting Retinal Damage

(c) Cyber-Network Intrusion detection

(d) Internet Of Things (IoT) Big-Data Anomaly detection

DEVELOPMENT OF ANOMALY DETECTION MODEL

Database

Training

HOW TO DELIVER ML MODEL AS A SERVICE?

IT IS MUCH HARDER…

WELL BEGUN IS HALF DONE

- Research : Research on ML model for anomaly detection
- Development : Development of an application with ML model
- Deployment : Deployment and test

- Operation : update with feedback, fixing bugs.
- Improvement : more data, more research, more updates...

DLADS : DEEP LEARNING BASED ANOMALY DETECTION SYSTEM

AUTOENCODER FOR ANOMALY DETECTION

AUTOENCODER FOR ANOMALY DETECTION

- Input: $x \in \mathbb{R}^d$, output: $\hat{x} \in \mathbb{R}^d$
- A. Feature extraction from encoder :
- B. Reconstruction from feature space : $\hat{x} = f_{dec}(z)$
- C. Discrepancy due to incomplete information : $d(x, \hat{x}) > 0$
- D. Use this error as anomaly score : a

$$z = f_{enc}(x), z \in \mathbb{R}^{d'}, d' < d$$

$$d(x, \hat{x}) = (x - \hat{x})^2$$

HOW TO DESIGN OVERALL SYSTEM

- Multiple sensors are deployed at HANARO
- Measured values are stored on secured server in real
- Basic requirements
 - Communication with the server
 - Calculation of anomaly score with trained ML/DL
 - Visualization of variables and AD status

DESIGN OF SYSTEM FRAMEWORK

- Three main modules
- Communication
- Anomaly detection
- Visualization
- & other sub functions

COMMUNICATION MODULE

- Server-to-framework communication
 - Get packets from secured server with specified program (TCP/IP Socket).
- Module-to-module communication
 - Operates an dataframe (queue) to store data.
 - Exchange processed data between modules.

ANOMALY DETECTION MODULE

- Model Training
 - Training an autoencoder with collected data
- Inference
 - Do feature extraction and reconstruction
 - Calculate anomaly score

VISUALIZATION MODULE

- Provide user interface based on streamlit
- Managing graph panels
 - Monitoring panel
 - Anomaly score panel

DEPLOYMENT

- Environment setting
- Connection check

ISSUES AND DIFFICULTIES

- Problems in environment setting / network separation
- More algorithms & fine tuning
- Calculation of anomaly score (MSE \rightarrow Mahalanobis distance, Top-k)
- Problem of visualization (various scores)
- Proper thresholding (e.g., running mean)

Thank you