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1. Introduction 
 

Recently, various studies [1-3] using artificial 
intelligence (AI) have been conducted in the nuclear 
industry to reduce the risk of operators and prevent 
accidents. Through these studies, technologies such as 
operator support system, accident diagnosis, and 
prediction of the remaining useful life of the 
components are being developed. In particular, research 
on abnormal states diagnosis is being actively 
conducted to support the operation procedure selection 
process that causes an increase in human error. 
However, in order to prevent accident aggravation and 
reactor trip, it is also necessary to provide future 
information on monitoring variables in addition to 
status diagnosis. 

Accordingly, in this study, we propose abnormal 
diagnosis and prediction using a multi-task learning 
(MTL) method in abnormal states. Specifically, it 
performs the task of diagnosing abnormal scenarios and 
predicting the future values of monitoring variables 
through a single model. The prediction target variables 
were selected as the pressurizer (PRZ) water level and 
pressure, which are the main variables that check the 
integrity in the abnormal PRZ states. The MTL applied 
in this study is a method to improve learning efficiency 
and performance through a single model for multiple 
tasks. In other words, it aims to improve generalization 
performance for all tasks by utilizing the useful 
information contained in data from multiple tasks [4]. 

The applied data are numerical data acquired through 
a compact nuclear simulator (CNS), and data from six 
abnormal scenarios were used among many scenarios. 
The input variables were selected using symptom 
analysis and the correlation coefficient method. After 
then, the data were divided into diagnosis and 
prediction datasets. In this study, the MTL-based model 
developed to confirm the effectiveness of MTL was 
compared with each individual diagnosis and prediction 
model.  

 
2. Methods for abnormal diagnosis and prediction 
 

2.1 Multi-task learning 
 
MTL is a method for jointly learning several related 

tasks inspired by the human learning ability [4]. That is, 
it is a method to improve generalization performance 
for all tasks by sharing characteristics of related tasks. 
Also, MTL performs model parameter reduction and 
efficient calculation by learning multi-tasks at the same 

time. MTL is generally divided into hard parameter 
sharing and soft parameter sharing structures [5]. Hard 
parameter sharing is a commonly used structure in 
MTL. It has a structure that extracts common features 
by sharing a hidden layer, and then learns to improve 
the performance of each task through an output layer 
for each task. The advantage of this structure is that the 
model improves generalization performance for all 
tasks, thus avoiding overfitting. Soft parameter sharing 
has its own layers for each task. Also, a penalty is 
applied so that the parameters of the layers have similar 
weight to reduce the difference between layers. Fig. 1 
shows the two structures of parameter sharing in MTL. 
In this study, abnormal diagnosis and prediction were 
performed by applying MTL based on the hard 
parameter sharing structure.  

 

Fig. 1. Structure of parameter sharing in MTL  
 

2.2 Architecture of multi-task learning model 
 

The structure of the MTL model applied for 
abnormal diagnosis and prediction is shown in Figs. 2 
and 3. The shared network consists of long short-term 
memory (LSTM) [6], a method specialized for time-
series data. In the case of Fig. 2, an abnormal diagnosis 
and prediction results are output based on single input 
data (i.e., Input1). As mentioned in section 2.1, it is 
designed to improve the performance of abnormal 
diagnosis and prediction tasks by sharing information 
about each task through a shared network. In the case of 
Fig. 3, Input3 is added to the prediction network in 
order to further improve the performance of the 
prediction task after dividing Input1 into Input2 and 
Input3. Input2 consists of diagnosis variables and 
variables with high correlation coefficient values; 
Input3 consists of variables with low correlation 
coefficient values. That is, by adding Input3, the model 
was established to further improve the performance of 
the prediction task along with information sharing 
through the shared network.  Finally, the tasks are as 
follows: 

 
- Task 1: abnormal diagnosis 
- Task 2: prediction of variable value after 30 steps 
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- Task 3: prediction of variable value after 60 steps 
- Task 4: prediction of variable value after 90 steps 
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Fig. 2. Structure of MTL with single-input  
 

 
 

Fig. 3. Structure of MTL with multi-input  
 

2.3 Optimization of multi-task learning model 
 
In order to accurately perform abnormal diagnosis 

and prediction through the MTL model designed as 
shown in Figs. 2 and 3, the parameter optimization 
process is required. First, Adam was used as the 
optimizer function to optimize the model. Also, the 
model was trained by varying the LSTM units, batch 
size, and learning rate. The optimal model is selected 
when the total loss value was the lowest. The loss 
functions of abnormal diagnosis and prediction tasks 
are categorical cross entropy and mean squared error, 
respectively. The total loss is calculated as Eq. (1). 

 

1

t

total i i
i

L w L


   (1) 

where iw  and iL  are weighted value and loss value for 

each task, respectively. And t  is the number of tasks. 
 

3. Data preprocessing 

 
The used data are abnormal data acquired through the 

CNS. Table I shows the applied scenarios for MTL-
based AI model development. After the data acquisition, 
data preprocessing is required for training the AI model. 
The process consists of input variable selection, data 
standardization, and transformation into a form of input 
data suitable for the AI method to be applied. In this 
study, the input variables were selected through the 
symptom analysis and Pearson correlation coefficient 
methods. The input variables consist of variables 
representing the scenario characteristics and variables 
related to the PRZ. After then, data standardization is 
performed based on the selected input variables. Data 
standardization is a method of transforming data into a 
normal distribution. Finally, standardized data is 
converted to the input data form of the LSTM.  
 

Table I: Acquired abnormal scenarios 

No. Scenario name 

1 Normal 

2 PRZ pressure channel failure – high 

3 PRZ water level channel failure – high 

4 PRZ water level channel failure – low 

5 PRZ power-operated relief valve opening 

6 PRZ safety valve failure 

7 PRZ spray valve failure - opening 

 
4. Results of abnormal diagnosis and prediction 

 
An abnormal diagnosis and prediction model was 

developed based on MTL using single and multi-inputs. 
The performance of the model developed based on 
MTL was evaluated through accuracy, root mean 
squared error (RMSE), and R-square (R2). The 
accuracy is used to evaluate abnormal diagnosis task 
(i.e., Task 1). The higher the accuracy, the better the 
model performance. RMSE and R2 are used to evaluate 
the variable state prediction tasks (i.e., Tasks 2-4). The 
lower the value of RMSE and the closer R2 is to 1, the 
better the performance. RMSE and R2 are calculated as 
in Eqs. (2) and (3).  
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where ky  and ˆky  are real and predicted values, 

respectively. maxy and y  represents the maximum and 
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mean values of variable, and N  is the number of 
samples. 

 
The performance comparison of the developed 

diagnosis and prediction model was performed with a 
single-task learning (STL) model. The STL model has a 
structure in which LSTM layers are sequentially 
stacked and uses the same model parameters as MTL 
model. And, the STL model used Input1 as input data 
(refer to Fig. 2).  

Table Ⅱ shows the diagnosis results from the MTL 
and STL models for training and test datasets. In the 
table, Model 1 and Model 2 are the same as the 
structure of Figs. 2 and 3, respectively. As for the 
diagnosis results, all models showed 100% accuracy in 
training dataset, but the STL model showed the highest 
accuracy in test dataset. Tables Ⅲ and Ⅳ show the 
prediction performance of PRZ water level and pressure. 
In the case of Model 3, an individual model was 
developed for each task. In the prediction tasks, the 
MTL model shows better performance than the STL 
model; and among the MTL models, Model 2 that 
injected additional input data into the prediction task 
performed much better.  

  

Table Ⅱ: Diagnosis results through MTL and STL models 

Structure 
Accuracy 

Train data Test data 

MTL 
Model 1 100% 98.208% 

Model 2 100% 98.226% 

STL Model 3 100% 98.229% 

 

Table Ⅲ: Prediction performance of PRZ water level 
through MTL and STL models 

Structure Performance
Test data 

Task 2 Task 3 Task 4

MTL 

Model 1 
RMSE (%) 0.6103 0.6255 0.7343

R2 0.9992 0.9992 0.9990

Model 2 
RMSE (%) 0.4213 0.4008 0.3703

R2 0.9996 0.9997 0.9997

STL Model 3 
RMSE (%) 1.3903 0.8039 1.529

R2 0.9959 0.9987 0.9956

 

Table Ⅳ: Prediction performance of PRZ pressure through 
MTL and STL models 

Structure Performance 
Test data 

Task 2 Task 3 Task 4

MTL 

Model 1
RMSE (%) 0.6229 0.6252 0.7124

R2 0.9985 0.9985 0.9980

Model 2
RMSE (%) 0.1911 0.2222 0.2425

R2 0.9999 0.9998 0.9998

STL Model 3
RMSE (%) 0.8116 1.1730 4.8753

R2 0.9974 0.9946 0.9068

 
Although the developed MTL model showed little 

difference in performance from the STL in the 
diagnosis task, the RMSE decreased by a maximum 
reduction of 4.6% and the R2 value was close to 1 in the 
prediction tasks. Figs. 4 and 5 show the prediction 
results through the Model 2.  

 

 
Fig. 4. Prediction results of PRZ water level for Task 4 

 

 
 

Fig. 5. Prediction results of PRZ pressure for Task 4 
 

5. Conclusions 
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In this study, abnormal diagnosis and prediction were 
performed using MTL for the purpose of developing a 
technology to reduce human error of operators during 
abnormal states. The diagnosis task is to classify seven 
scenarios, including normal. The prediction tasks are to 
predict the values after 30, 60, and 90 steps of the PRZ 
water level and pressure. The advantage of the MTL 
method is to improve the performance of all tasks over 
a shared network. In addition, two structures based on 
MTL method were proposed in this study. The 
proposed MTL models showed better overall 
performance than the STL model. Also, the accuracy 
and prediction performance of Model 2, which adds 
input data to the prediction task, were better than Model 
1.  

Since only the PRZ water level and pressure were 
predicted among the main monitoring variables to be 
checked during abnormal states in nuclear power plants, 
it is necessary to provide information on more variables 
in the future. Also, only seven scenarios in the study 
were diagnosed, but it is necessary to diagnose all 
abnormal scenarios. If an improved MTL-based 
abnormal diagnosis and prediction model is developed, 
it is expected that human errors can be reduced by 
providing the operator with diagnosis and state 
information on monitoring variables. 
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