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1. Introduction 

 
A variety of abnormal states exist in nuclear power 

plants (NPPs) due to various causes. In the event of an 

abnormal state, economic loss and safety can be 

threatened. The operator of NPPs should identify many 

monitoring factors to perform diagnosis and action to 

prevent the deterioration of the abnormal condition. 

Diagnostic work is carried out in an urgent state, which 

can cause a human error of the operator. 

Recently, many studies have been conducted to 

support operator decisions by applying artificial 

intelligence (AI) to the accident diagnosis of NPPs to 

reduce human error [1]. Many studies have led to the 

development of high-performance AI, which shows 

high accuracy in diagnosis. However, AI does not 

always provide the correct answer, and the operator is 

responsible for the incorrect diagnosis and action. 

Therefore, reliability is an important issue in AI 

application. 

In various fields, the development of explainable AI 

(XAI) to increase the reliability of AI is actively 

progressing. However, XAI is being developed mainly 

in the field of the image. That is, there are limitations in 

its application to time-series data of NPPs [2]. 

Accordingly, in this study, time-series data of NPPs are 

converted into images. There are many ways to convert 

time-series data into image (e.g., recurrence plot, 

Markov transition field, etc.). These ways are effective 

in converting time-series characteristics but are difficult 

to interpret. Therefore, it is converted into an image in 

the form of a trend plot for intuitive interpretation. 

Additionally, an abnormal diagnosis model is 

developed based on the converted image data. After that, 

the shapely additive explanation (SHAP) of the XAI 

method is applied to the model to explain the results of 

AI. 

This study proposes to provide the operator with the 

focus of AI (i.e., the part that AI focuses on making 

decisions) through the application of XAI.  

 

2. Methods 

 

2.1 Convolutional Neural Network 

 

Convolutional neural network (CNN) was used as the 

abnormal diagnosis model. CNN is an effective model 

for extracting features from images and classifying 

them by class [3]. Several convolution operations and 

pooling generate features representing patterns in the 

image. After that, the features are converted into one-

dimensional data in the flatten layer and input to the 

fully connected layer. In a fully connected layer, 

classification is performed through the activation 

function softmax. Fig.1 shows the structure of the CNN 

used as a diagnostic model in this study. 
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Fig. 1. Overview of CNN structure and hyperparameters used 

as diagnostic model. 

 

2.2 Shapely Additive Explanation 

 

SHAP is a method that aims to explain the output of 

a model using shapely values [4]. The Shapely value is 

the importance value of each feature calculated 

considering all feature combinations that contribute to 

the model output. In other words, it calculates the 

shapely value of each pixel, providing information that 

contributed to the model’s output (i.e., decision). The 

shapely value  of the feature i  is represented by Eq. 

(1). Parameters information used in Eq. (1) is shown in 

Table I. 

 

\{ }

!( 1)!
( ) ( ( { }) ( ))

!
i

P N i

P n P
f f P i f P

n
 (1) 

 

Table I: Shapely value parameter description 

Parameter Description 

i  Shapley value for i data 

n  Total number of features 

P  All set except i feature in total group 

( )f P  
The contribution of the set excluding the 

i  feature to the result 

( { })f P i  
The contribution of the set containing the 

i  feature 

3. Generate Image Data 
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3.1 Data Collection and Pre-Processing 

 

In this study, the training and test data of the NPPs 

abnormal state diagnosis model were collected through 

the compact nuclear simulator (CNS). The CNS is a 

simulator designed based on the Westinghouse 3-loop 

pressurized water reactor. Among the collected data, 30 

parameters are selected through correlation analysis. 

Additionally, a min-max normalization is applied to 

normalize the collected data between 0 and 1. The 

selected parameters are listed in Table Ⅱ. 

 

Table Ⅱ: Selected input variables list 

No. Description 

1 PRZ pressure safety valve opening state 

2 HV6 valve opening state 

3 PRZ spray valve opening state 

4 PRZ spray flow 

5 PORV opening state 

6 PRZ level (channel) 

7 Normalized PRZ level (process) 

8 PRZ pressure (channel) 

9 PRZ pressure (process) 

10 PRZ temperature 

11 PRT pressure (channel) 

12 PRT pressure 

13 PRT temperature 

14 PRT water level 

15 Back-up heaters power 

16 Proportional heaters power 

17 VCT pressure 

18 VCT level 

19 Containment radiation 

20 Containment pressure 

21 Containment sump level 

22 Containment relative humidity 

23 Containment temperature 

24 Charging flow 

25 Letdown flow 

26 Charging line outlet temperature 

27 45 GPM orifice valve opening state 

28 60 GPM orifice valve opening state 

29 75 GPM orifice valve opening state 

30 Letdown isolation valve opening state 

* PRZ: pressurizer 

* PORV: power operated relief valve 

* PRT: pressure relief tank 

* VCT: volume control tank 

* GPM: gallon per minute 

 

3.2 Image Generation 

 

Each variable in the data is converted into an image 

that plots the trend. The trend images represent the data 

change of 20 second period as a plot as shown in Fig. 2. 

Additionally, the plot shows the difference between the 

steady state and the current state by dividing the two 

regions based on the average of the normal value. In the 

image, the green line represents the average of the 

normal values of the corresponding variables in the 

NPPs. The red and blue areas represent a higher part 

than normal and a lower part than normal, respectively. 

 

 
Fig. 2. Example of trend plot image. 

 

The converted image used the form of subplots so 

that the states of all variables could be included in one 

image. Fig.3 shows an example of an image, one of the 

images used as training and test data. Each variable 

depicted in Table Ⅱ is positioned to match the number 

shown in Fig. 3. 

 

 
 
Fig. 3. Example of input image using subplot. 

 

4. Results 
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4.1 Diagnosis Result of CNN Model 
 

As shown in Table Ⅲ, this study classifies eight 

abnormal and normal states related to instrument error, 

component status abnormality, and pipe leakage.  

Diagnostic results are evaluated for accuracy using a 

confusion matrix. The confusion matrix is a table that 

shows the comparison of the model’s predicted results 

with the actual true answers. Fig. 4 shows the confusion 

matrix of the diagnosis model test result. Accuracy is 

calculated through Eq. (2), and the test accuracy 

showed about 99.9%. There were some diagnostic 

failures. 

Table Ⅲ: Collected data and scenario information 

No. Scenario name 

No. of 

train 

data 

No. of 

test 

data 

1 Normal 7,848 400 

2 
PRZ spray valve failure 

“open” 
38,185 8,934 

3 
PRZ pressure channel failure 

‘high’ 
2,242 297 

4 
PRZ level channel failure 

“low” 
7,952 9,090 

5 
PRZ level channel failure 

“high” 
8,855 1,771 

6 PRZ PORV open 26,034 3,659 

7 
PRZ pressure safety valve 

failure 
21,155 3,598 

8 Leakage from RCS to CCW 1,018 169 

* RCS: reactor coolant system 

* CCW: component cooling water 

 

number of test data predicted correctly
Accuracy

number of total test data
=  (2) 

 

 
 

Fig. 4. A confusion matrix representing the test results of the 

diagnostic model. 

 

4.2 Application of SAHP 

 

XAI results utilize the DeepExplainer method in 

SHAP, which is effective for deep learning model. 

DeepExplainer visualizes the positive and negative 

effects of all output from one input. The features that 

have a positive effect on the diagnosis are shown in red, 

and the features that have a negative effect on the 

diagnosis are shown in blue. Fig. 5 shows the diagnosis 

result of the ‘leakage from RCS to CCW’ scenario (i.e., 

No.8 scenario). AI focuses on the shape of the 

following variables in the outcome of the No.8 scenario 

diagnosis; 1) containment radiation and temperature and 

sump level increase 2) reduced PRZ safety valve 

opening state. 

 

 
 

Fig. 5. SHAP application result for ‘leakage from RCS to 

CCW’ scenario. 

 
5. Conclusions 

 

In this study, the application of XAI was proposed 

for the reliable diagnosis of abnormal states in NPPs. 

For the application of XAI, multivariate time-series data 

of NPPs were converted into images, and CNN was 

applied for diagnosis using image data. The diagnostic 

task was tested by classifying 8 scenarios and showed 

high accuracy. In addition, it showed the focus of AI in 

the diagnosis process and the reliable diagnosis results. 

In future work, we plan to analyze the focus of AI 

and identify more scenarios through trend image 

optimization. 
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