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1. Introduction 
 

Due to the aging of nuclear power plants (NPPs), the 
possibility of abnormal situation occurrences is 
increasing. Numerous indicators and alarm systems 
exist in the NPP main control room. When an abnormal 
situation occurs at an NPP, the operator must perform 
the tasks described in advance by making a diagnosis as 
an appropriate thing among hundreds of abnormal 
situations within a given time based on such 
information on the NPP. For this, the operator tasks are 
accompanied by a high workload.  Such task difficulty 
can increase the human error possibility. Recently, 
earlier research has been conducted to solve these safety 
problems with a diagnostic support system using 
artificial intelligence (AI) technology. 

However, it is difficult to directly apply the 
diagnostic results of the AI model corresponding to the 
black-box to support the abnormal state diagnosis in 
NPPs. Recently, explanation techniques to validate 
these AI models have been studied. Operators can be 
provided support together with model diagnosis results 
and cause through the explainable AI. This increases 
the reliability of the operator support system and 
reduces operator confusion, increasing the applicability 
of AI technology to the actual nuclear industry. In this 
study, we tried the mapping of monitoring parameters 
to expect a better explanation of the model. The 3-
channel convolutional neural network (CNN) trained on 
the imaged datasets was explained by Guided 
backpropagation + Gradient-weighted Class Activation 
Mapping (Guided Grad-CAM). Through this, it was 
confirmed that the model can provide a suitable 
diagnostic cause. In addition, we can expect to enhance 
operator understanding by post-processing the 
explanation results. 

 
2. Methodology 

 
The proposed experiment is performed as shown in 

the figure below. Parameters in the produced data set 
are arranged in the form of a nuclear power plant map. 
These arrayed image data sets maximize the advantage 
of the CNN model and model explanation techniques. 

 

 

Fig. 1. Experimental Setup 

 
2.1 Data Production 

 
We used a 3KEYMASTER Simulator based on a 

1400MWe Generic Pressurizer Water Reactor from 
Western Service Corporation (WSC) to produce the 
experimental data file [1]. 

15 abnormal situations as shown in Table I below 
were simulated in this simulator by injecting the 
malfunction. For each abnormal situation, it was 
produced 48 training data files to varying malfunction 
degrees. (720 data files in total) Each training data file 
contains monitoring parameter information while the 
60s. 

 

 

Fig. 2. WSC 3KEYMASTER simulator 

Table I: Kinds of Abnormal Events for Datasets 

State Abnormal event 
SGTL Steam generator tube leakage 
CHRG Charging line break upstream 
LTDN Letdown line leakage inside the containment 
CDS Loss of condenser vacuum 
POSRV HV456A valve leakage 
CWS Circulating water tube leakage in LP 

condenser 
MSIV Main steam isolation valve abnormality 
RCP HV8351A valve abnormality 
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MSS Main steam header steam leakage 
PZR PV455B valve leakage 
CCW CCW service loop header leakage 
LFH Feedwater heater 1A tube break 
HFH Feedwater heater 5A tube break 
MFW FV1B valve leakage 
TCS CV1 valve abnormality 

 
2.2 Multi-channel Convolutional Neural Network 

 
The earlier research have used 2-channel CNN to 

classify abnormal events [2]. As shown in Fig. 1 below, 
a 2-channel CNN uses a two-channel structure as input. 
The first channel has current information about 
parameter values, and the second channel has 
information about the amount of parameter change. 
This model has showed high accuracy compared to 
recurrent neural networks or 1-channel convolutional 
neural networks. 

 

 

Fig. 3. 2-CH CNN Structure 

 
In this study, a 3-channel CNN was used by 

reflecting the previous research model. Each model has 
a total of 3 channels: current information, change 
information from 10 seconds ago and change 
information from 15 seconds ago. 

 
2.3 Pre-processing with Data Structure 

 
Unlike data structure with the simple stacking and 

square shapes performed in the earlier study mentioned, 
we try to take advantage of the feature that the CNN 
trains information from neighboring pixels for a 
position through filters (3*3). In this study, pixels 
representing 332 monitoring parameters in datasets are 
arranged in the form of the NPP. Each parameter is 
placed at 20 system locations. Some parameters are 
used redundantly to express the shape of the system. In 
addition, it was considered the pump and line locations 
to arrange. Input image with mapped parameter looks 
like below Fig. 4. 

 

 

Fig. 4. Monitoring Parameters on the NPP Map 

 
2.4 Guided Grad-CAM 
 

Grad-CAM, a representative model analysis 
technique based on CNN, was used [3]. The equation of 
the Grad-CAM technique is as follows. 

 

 

Fig. 5. Equation for Grad-CAM 

 
Guided Grad-CAM can be expressed by multiplying 

the existing Grad-CAM with the Guided 
Backpropagation result as shown in Fig. 6 below. This 
shows a higher resolution than the existing technique. 

 

 

Fig. 6. Guided Grad-CAM [3] 

 
2.5 Post-processing with Explained Results 

 
It is necessary to consider how to provide diagnostic 

explanation results that change every second. In 
addition, we tried to provide the operator with a 
visualization of the parameter change score as it was 
judged to be important as a diagnostic cause. In this 
regard, the following two criteria were established. 

 
(1) (Relevance score ∙ |Change score while 15s|)2 

(2) Normalized relevance score > 0.5 
 

3. Results 
 

3.1 Model Training 
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The model was trained with very high performance 
as following Table II. Also, the model accurately 
diagnosed all 15 test data files given for each scenario.  

 

Table II: Training Result 

Training dataset Validation dataset 
Accuracy Loss Accuracy Loss 
1.0000 2.1711e-6 1.0000 7.6496e-6 

 

Fig. 7. Learning Curve with Accuracy 

 

Fig. 8. Learning Curve with Loss 

 
3.2 Comparison with Post-processing 

 
We explain when the model diagnoses the test 

scenario cases. The explanation result is immediately 
shown in Fig. 9-12 for examples. It was visualized so 
that the cause of the diagnosis could be known. 

Fig. 9 and Fig. 10 below are visualization results by 
averaging the explained relevance score for 60 seconds 
immediately after the abnormal diagnosis and 20 
seconds immediately after the model diagnosis to the 
LFH event. It was confirmed that it is possible to 
express even the cause component by visualizing the 
explained relevance score in a relatively short time. In 
Fig. 10, the direct causative component, near the 
feedwater heater 1A tube, was visualized with a high 
relevance score. 

 

 

Fig. 9. Explanation Result while 60s at LFH Event 

 

Fig. 10. Explanation Result while 20s at LFH Event 

Fig. 11 and Fig. 12 below respectively show the 
visualization results according to whether parameter 
change information is reflected in the explanation 
results when the model diagnoses MSIV. In Fig. 11, the 
six causative systems are visualized. As a result of 
reflecting the parameter change information and 
transforming with 0.5 thresholds in Fig. 12, only four 
causative systems were derived, and a neat visualization 
image can be confirmed. However, it can be seen that 
the score near the main steam isolation valve, which is 
the main cause, is lowered. 

 

 

Fig. 11. Explanation Result at MSIV Event 
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Fig. 12. Explanation Result with Change at MSIV Event 

 
4. Conclusions 

 
To increase the operator task efficiency in the 

abnormal situation of an NPP, we proposed to support 
the operator using explainable AI. The approach was 
able to provide diagnostic results along with the 
immediately visualized diagnostic causes by explaining 
the CNN model trained using parameters arranged to 
the NPP map through Guided Grad-CAM. By mapping 
parameters to the NPP map, the preprocessed image 
trained the model with high learning performance and 
was advantageous in terms of visualization. In addition, 
it was possible to provide the diagnostic cause at an 
understandable level to the operator through appropriate 
processing of the explanation result. In future studies, it 
is required to validate that the visualized causative 
system to become practical support information for 
operators to diagnose abnormal events in NPPs.  
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