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1. Introduction 

 
For improvement of the safety of nuclear Power 

Plants (NPPs), a lot of Passive Safety Systems (PSSs) 

are being developed. However, since the existing NPP 

regulatory guidelines target active safety system, 

guidelines for PSSs are still lacking. In this study, prior 

to the development of the PSSs regulatory guidelines, 

the intrinsic characteristics of PSSs and the difference 

between the active safety systems are analyzed through 

the performance evaluation of the system. Because the 

PSSs have weak driving force, it is greatly affected by 

the pressure drop in the pipe. Therefore, when 

evaluating the performance of the system, the pressure 

drop predictability of system codes should be verified. 

Therefore, Lee et al. [1] evaluated the pressure drop 

predictability of MARS-KS with natural circulation 

loop type experiments. And to investigate the current 

issues affecting the performance of PSSs, KINS (Korea 

Institute of Nuclear Safety) reviewed the reports of 

OECD/NEA-WGRNR (Organization for Economic Co-

operation and Development/Nuclear Energy Agency-Working 

Group on Regulations of New Reactors)[2], WENRA-

RHWG (Western European Nuclear Regulators Association-

Reactor Harmonization Working Group)[3]. With the 

reference to those reports KINS selected major issues 

about performance of PSSs [4]. With those issues, Lee 

et al [5] applied performance issues to passive heat 

removal type systems and evaluated the change of 

system performance with issues. In this paper, the 

performances issues are applied to the Passive 

Emergency Core Cooling System (PECCS) and the 

effect of performance issues will be evaluated with 

conceptual problem 

 

2. Performance issue of PSSs 

 

The main performance issues of PSSs presented by 

KINS are as follows [4]. 

- Leakage of coolant 

- Change of atmosphere temperature 

- Heat loss 

- Non-condensable gases in system 

- Aging of pipe and heat exchanger 

- Operability of check valve 

- Fire in containment building 

- Pipe deformation due to seismic event 

- Model and correlation uncertainties of analysis 

code 

 

3.  Example Analysis on Performance Issues 

 

3.1 Analysis of Reference model 

 

To analyze the effect of performance issues on 

PECCS, a conceptual model of PECCS was developed 

as shown in the figure 1. The model consists of a Vessel, 

Core Makeup Tank (CMT), Safety Injection Tank (SIT), 

connecting pipes, and valves. The geometries of CMT 

and SIT are as follows. 

CMT Geometry: 

- Water Volume/level: 35 m
3 
/ 6 m 

- Pipe diameter: 54 mm 

- Length: 100 m 

SIT Geometry: 

- Water Volume/level: 90 m
3 
/ 10 m 

- Pipe diameter: 54 mm 

- Length: 125 m 

In the reference model analysis, the loss of coolant 

accident was simulated by opening the discharge valve 

located at the top of the reactor vessel. The system 

pressure is decreased due to the discharge of coolant, 

and CMT and SIT are sequentially injected according to 

the operating pressure. The effect of issue on the system 

performance was analyzed through the injection 

behavior and the heater surface temperature. The 

analysis result of the reference input model is shown in 

the figure 2. 
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Fig. 1. Nodalization for example analysis of performance 

issues  
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(b) Mass flow rate 
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(c) Water level 

0 5000 10000 15000 20000
350

400

450

500

550

600

650

 Core outlet Temp.

 Heater surface Temp.

T
e
m

p
e
ra

tu
re

 [
K

]

Time [s]
 

(d) Temperature 

Fig. 2. Reference model results 

 

As shown in the results, system pressure decreases 

drastically with valve opening, and PECCS operates 

with CMT actuation signal and SIT actuation signal. 

With the injection of coolant, the water level in the 

reactor vessel is recovered and shows stable behavior. 

The heater surface temperature increases rapidly at the 

beginning of the accident (~650K), but then decreases 

stably and is maintained at about 465K. 

3.2 Example Analysis of Performance Issues 

 

Example analysis was conducted for each 

performance issue through the input model developed 

above. In these analyses, the effect of issues about 

leakage, ambient temperature, fire, NC gases on the 

PECCS performance is expected to be small. And other 

results are summarized in Fig. 3~7.  

 

1) PECCS pipe heat loss can increase pressure 

drop since two-phase flow in the inlet pipe might 

be formed with vapor condensation, but the 

change in PECCS cooling water injection 

performance is small. 

2) Seismic events (changes in pipe shape) and 

aging (reduction of pipe area) can increase the 

pressure drop in the flow path and reduce the 

cooling water injection performance of PECCS. 
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Fig. 3. Effect of heat loss in pipe results 
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Fig. 4. Effect of seismic event results 
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(a) Mass flow rate 

0 5000 10000 15000 20000
0

20

40

60

80

100

 Reference model

 Pipe aging

W
a

te
r 

le
v
e
l 
[%

]

Time [s]  
(b) Vessel water level 

Fig. 5. Effect of pipe aging results 

 

 

 

 

 

3) When the model uncertainty is large, the 

predictive performance of PECCS coolant 

injection may change significantly. In the CMT 

tank, wall condensation at the inner wall could 

make uncertainty. With this uncertainty, CMT 

pressure relatively low since a large amount of 

steam is condensed on the upper part of the tank. 

Also, as the driving force decreased, check valve 

could be closed. 
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Fig. 6. Effect of model uncertainty results 
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4) In the presence of a check valve, the reduction 

in driving force may cause the valve to close, 

reducing the performance of the driven system. 

Furthermore, if the check valve is not properly 

modeled, it may distort the phenomenon as the 

coolant flows back into the CMT. 
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Fig. 7. Effect of check valve results 

 

 

3.3 Comprehensive effect Assessment of Performance Issues 

 

Although the effect of individual performance issues 

may be negligible, when they occur simultaneously, the 

change in system performance can vary greatly. 

Therefore, in this study, the effect on PECCS injection 

performance was analyzed when comprehensively 

considering the heat transfer model uncertainty (wall 

condensation at tank inner wall), heat loss (tank outer 

wall), and aging (pipe flow area) that directly affect the 

CMT injection flow rate. 

As shown in analysis result, the CMT injection flow 

rate decreases and shows unstable behavior. 

Furthermore, in order to the large amount of 

condensation in the CMT, the pressure of CMT 

decreases and core make-up water injection is stopped 

after about 8,500 seconds. When the operating 

differential pressure of the check valve is 0.1 bar, the 

core make-up water is intermittently injected into the 

reactor vessel, but the amount is very small. In 

conclusion, although the effect of each issue on the 

PECCS is small, the effect can be large if these issues 

are considered comprehensively. 
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Fig. 8. Comprehensive effect analysis results 

 

4. Conclusion 

 

The PSS has a small driving force, so its performance 

may vary greatly due to various internal and external 

factors. In order to confirm the effect of issues on the 

PECCS performance, an example analyses were 

performed on the conceptual model of the PECCS using 

MARS-KS v1.5. 

Firstly, effect of fluid leakage, atmospheric 

temperature, fire, NC gas, and piping heat loss on the 

PSS injection performance is small. Performance of 

PECCS could be reduced with earthquake, aging 

deterioration, and model uncertainty. Check valve may 

fail under low driving force condition, and the PSS 

performance may decrease. In order to analyze the 

effect of issues when they occur simultaneously, 

comprehensive effect analysis was also conducted in 

this study. 

The results of this study provide qualitative insights 

about the effects of various internal and external issues 

on the PECCS performance. Since these results could 

give understanding how each performance issues affect 

the system, it is expected that this study could be helpful 

to actual design of the PSSs.  
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