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○ Severe accident

• Partial or complete 'melt-down' of the reactor core

○ Severe accident management strategy: In-Vessel Retention (IVR)

• Integrity of reactor pressure vessel (RPV) is determined through … 

“thermal behavior” of the in-vessel core melts

• Complex phenomena determining thermal behavior of the corium pool

• Phase-change of the core melts (crust formation & mushy zone), 

conjugate heat transfer (CHT), natural convective flow, turbulence, etc.

○ Previous work

• Development of numerical platform which can simulate the important phenomena (phase change, 

CHT, natural convection) to evaluate thermal behavior of core melts

○ Objective:

• Comparison of the phase-change models of enthalpy porosity methodology for mixture material 

with LIVE L7V test

○ Previously, the numerical platform (with EPM for pure material) which can simulate the oxide pool 

behaviors was developed and validated with representative experiments (Gallium melting test, LIVE-L7V 

and LIVE-L7W). In this work, the EPM models for mixture material are implemented in the previous 

numerical platform. The results of EPM+ are validated and compared in the LIVE-L7V. 

○ As a future work, further study of the impact of mushy zone, property f(T), turbulence models, 

boundary conditions (adiabatic, radiation, etc.) are required. 

Numerical Methodology

○ Enthalpy-porosity methodology (EPM) for phase change application [1]

• One of the representative methodologies to simulate phase-change problem in a fixed-grid 

system

• Latent heat is contained as a heat source or sink in the energy equation, and various 

methodologies could be done to make the velocity in the solid region as zero

• EPM considers a computational domain to be a porous domain (ε, here liquid fraction (g)) and 

divides it into a liquid (g=1), a solid (g=0), and regions where phase change is in progress 

(between 0 and 1). 

○ LIVE test [2]

• Geometry:

3D hemisphere (R = 0.5 m), 

side vessel wall (thickness = 0.025 m),

simulant height (H = 0.42m) 

• Selected cases: LIVE - L7V

• Internal heat generation (29 kW)

• Top and side cooling

• Simulant material

• Non-eutectic binary mixture of 20 mol% NaNO3 - 80 mol% KNO3

LIVE facility

○ Numerical conditions for LIVE simulation

• OpenFOAM solver ‘chtMultiRegionFoam’ for fluid flow and solid heat conduction 

along with conjugate heat transfer, is selected, and modified to include EPM source 

terms in the governing equations

• Numerical grid is divided into two parts: 

- Working fluid region and vessel wall region

• Boundary conditions :

- Top surface of working fluid and side vessel wall: 

heat transfer coefficient (cooling)

- Top surface of vessel wall: adiabatic condition Numerical grid

“Vessel wall”

“Working fluid”

Results
○ Results of LIVE-L7V

• Temperature and velocity contour:

- Unstable, Stable zone & Crust region

- Weakened descending flow

○ Comparison of the EPM models

• Melt temperature (MT) and Heat flux (HF):

- Most EPM+ & EPM (Tliq) show similar tendency
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○ Governing equations (GE):
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• Source terms in the GE: 
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• Constant, “C” is a sufficiently large value (104 to 107) to make the velocity of solid region zero

• Liquid fraction (g) is directly determined based on the field temperature as below:

g(1): for pure material g(2): for mixture material

• Crust thickness (CT):

- Crust thickness is a maximum at the bottom of the vessel and, thinning along the vessel wall

- EPM+ can simulate the mushy zone (the liquid fraction (gl) is between 0 and 1, while the liquid    

/ fraction is 0 or 1 in the previous EPM)

- Results of EPM+ show similar tendency between 

the EPM results
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