A Preliminary Validation and Sensitivity Analysis of FARO L-14 Experiment

using Fuel-Coolant Interaction Module of CINEMA

Seokwon Whang ^a

Soon-ho Park ^b, Hyun Sun Park ^a

^a Nuclear Research Institute for Future Technology and Policy, SNU

• FNC Technology

I. Introduction: Background

Severe Accident (SA)

- SAMG in Korea: <u>Pre-flooded cavity</u> strategy
 - ✓ Risk-significant SA phenomena : <u>FCI</u> & MCCI

I. Introduction: Steam Explosion

- Four phases of SE
 - ✓ Pre-mixing/fragmentation
 - "Jet break-up" & "fragmentation"
 - ✓ Triggering
 - Destabilizes the premixing config. & "Initiate the SE"
 - Internal (spontaneous), external (artificial, accidentally induced)
 - ✓ Propagation
 - Collapse the vapor film (liq-liq contact)
 - Fine "<u>fragmentation</u>": thermal & hydrodynamic
 - Thermal exchanges... propagation...
 - ✓ Expansion
 - <u>"Thermal energy</u>" is converted into "<u>Mechanical energy</u>"

I. Introduction: CINEMA Code

- CINEMA: Code for INtegrated severe accident Evaluation and MAnagement
 - ✓ 대형 가압경수로형 중대사고 사고 경위 및 관련 현상 해석
 - 정상운전, 노심가열, 노심용융, 노심재배치, 원자로용기 파손, 수소거동, 노심용융물 방출, 노심용융물-냉각수 상호작용, 노심용융물-콘크리트 반응, 격납건물 가압, 핵분열 생성물 거동
 - 중대사고 현상 <u>개별 독립적</u> / <u>통합 연계</u> 분석 가능
 - ✓ Code Structure
 - MASTER (연계 해석)
 - CSPACE (노내 현상)
 - SACAP (노외 현상)
 - SIRIUS (핵분열생성물)

Ref. CINEMA Theory / User manual

I. Introduction: SACAP Module

- SACAP Analysis Model: 격납건물 중대사고 현상 및 열수력 거동 분석 모듈
 - ✓ SA Phenomena
 - **FCI (SE)**, Debris bed formation, HPME/DCH, MCCI, Hydrogen combustion, Zr Oxidation

Ref. CINEMA Theory / User manual

I. Introduction: FCI(SE) Module

- Mixing
 - ✓ Melt Jet Break:
 - Jet breakup length (Taylor type, Bo > 50)

$$\frac{L_{BR}}{D_{in}} = C_{BR} \sqrt{\left(\frac{\rho_m}{\rho_l}\right)}$$

– Melt diameter

$$Bo_p^{1/2} = C_s \left(\frac{\rho_v}{\rho_l}\right)^{1/3} \left(\frac{\rho_m}{\rho_l}\right)^{-2/3}$$

Mass flow rate

$$\dot{m} = \frac{1}{2} \frac{\rho_m v_{in} D_{in}}{L_{BR}}$$

✓ Mixing region: Heat transfer of particles

I. Introduction: Objective

- **CINEMA User Group** work: 2022.04.18 2022.09.02
 - ✓ Purpose: User experience, Error reporting, Suggestion for module improvement, etc.
 - ✓ Selected Module: CINEMA Code ▷ SACAP Module ▷ FCI (SE) module ("StmExp")

- Objective:
 - Preliminary validation with representative mixing experiment (FARO)
 - ✓ Code-to-Code comparison with a FCI code (COOLAP-II: Mixing part)
 - ✓ Model parameter sensitivity
 - Particle heat transfer related parameter

II. Method: FARO-Experiment (FARO-L14)

FARO tests (JRC)

- ✓ Large scale **FCI** experiments
- ✓ **UO2-ZrO2** (80:20wt%)
- ✓ Corium melt ~ 150 kg
- ✓ Pressure 0.2~5MPa

	L28	L31	L14
Melt material	UO2-ZrO	2 (80:20wt%)	(corium)
Vessel type	Double	Double	Single
Melt mass (kg)	175	92	125
Melt jet diameter (m)	0.05	0.05	0.1
Melt initial temperature (K)	3052	3003	3123
System pressure (MPa)	0.51	0.22	5.1
Water pool depth (m)	1.44	1.45	2.05
Water temperature (subcool) (K)	423(3)	291(105)	537(1)
Debris catcher diameter (m)	0.71	0.41	0.71

II. Method: Numerical Input

- Simplified geometry
- Input parameter

Parameter		Value
	Volume (m ³)	2.45
Vessel	Diameter (m)	0.71
	Height (m) 4.0	
	Pressure (MPa)	5.1
	Temperature (K)	537
Melt jet	Water height (m)	2.05
	UO_2 -Zr O_2 (-)	80w%-20w%
	Decay heat	-
	Mass (kg)	125
	Temperature (K)	3123
	Release diameter (m)	0.0048
Model	Velocity (m/s)	1
	chtc (-) *	0.1
parameter	diam (mm) **	4.8

- *: Factor for heat transfer coefficient between jet and coolant. The value is based on the sensitivity analysis.
- ****: Mass median diameter** of particle during the jet breakup. The value is based on the experimental result.

III. Results: CINEMA

- FARO-L14 Results (CINEMA)
 - ✓ (preliminary) Best-estimate results

Model parameter	chtc (-)	0.1
	diam (mm)	4.8
	pnodeH (m)	0.02

- Model parameters are selected by preliminary parameter sensitivity analysis (chtc, diam and particle node height etc.)

III. Results: CINEMA vs. COOLAP-II

CINEMA vs. COOLAP-II in FARO-L14

Model parameter settings "As CINEMA" (not the best-estimate results for CL-II)

Sensitivity study for COOLAP-II model parameter 8 7.5 (C)7 Pressure (MPa) 6.5 6 BC 5.5 TΑ TA1 5 BH DM 4.5 0 2 8 10 Pressure

Ref. COOLAP-II Manual

III. Results: Parameter study

Particle heat transfer factor (chtc): 0.1(ref), 0.5, 1.0

COOLAP II 와 비교했을 때, 입자 열전달에 의한 민감도가 상당히 크며, 두 코드 내 비교가 필요할 것으로 보임

III. Results: Parameter study

• COOLAP II 와 비교했을 때, 입자 열전달에 의한 민감도가 상당히 크며, 두 코드 내 비교가 필요할 것으로 보임

III. Results: Suggestion for Model Parameter Settings

- Model parameter settings for <u>Reactor case</u> in COOLAP-II
 - ✓ FCI computer code (JASMINE)
 - Reactor case simulation

Main parameters of COOLAP-II

JASMINE Results for Reactor case

Ref. Moriyama, NED, 2016 & *COOLAP-II Manual* 14

IV. Conclusion

Summary

- ✓ <u>CINEMA User Group work</u>: 2022.04.18 2022.09.02
- ✓ <u>Melt mixing part</u> of FCI (SE) Module in CIMENA:
 - Preliminary validation of FARO-L14
 - Comparison with other FCI code (COOLAP-II)
 - Sensitivity analysis with particle heat transfer parameter ('chtc' & 'diam')
 - Suggestion of Model parameter setting for Rx cases... with other codes (TEXAS, JASMINE, etc.)

Other Suggestions & Error Reporting during User Group

- ✓ Mass fraction error
- ✓ Mass parameter (output) definition
- ✓ Heat transfer of particle in CINEMA: Film boiling & radiation -> Convection, Nucleate boiling, CHF etc.

Thank you for your attention

(s.whang@snu.ac.kr)

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20193110100050).