Realization of thermocline for thermal energy storage system study using a copper-sulfate electroplating system

2022.10.20

Min-Ju Kim, Jeong-won Han and Bum-Jin Chung*

Kyung Hee University

KNS Autumn meeting Changwon, Korea, October 19–21, 2022

Introduction

- Renewable energy generation rate \uparrow , intermittency issue arises
- Thermal energy storage (TES) can be a key solution for grid stability problem
- TES is considered for flexible operation of NPPs

TES system using packed bed

- Packed bed thermal energy storage
 - Randomly packed solid filler in cylindrical tank
 - Charging: hot fluid in \rightarrow cold fluid out
 - Discharging: cold fluid in \rightarrow hot fluid out
 - Different charging/discharging direction
 - Thermocline formation
 - Keep constant hot temperature even though the tank is not completely charged

Principle scheme of packed bed TES

Department of Nuclear Engineering

Object of present study

- Difficulties of TES experiments
 - Expensive and time-consuming
 - Relying primarily on numerical investigations

- Development of alternative experimental method
 - Substituting of thermocline packed bed TES experiments
 - Utilizing the mass transfer experimental technique
 - Simulation of temperature gradient region (thermocline)

Experimental setup

Experimental methodology

• Analogy between heat transfer and mass transfer

[Governing equations]

Heat transfer	Mass transfer		
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$			
$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$			
$\frac{DT}{Dt} = \alpha \nabla^2 T$	$\frac{DC}{Dt} = D\nabla^2 C$		

[Dimensionless numbers]

Heat transfer		Mass transfer	
Nu	$\frac{hd}{k}$	Sh	$rac{h_m d}{D_m}$
Pr	$\frac{\nu}{\alpha}$	Sc	$\frac{V}{D_m}$
Ra	$\frac{g\beta\Delta Td^3}{\alpha v}$	Ra	$rac{gd^3}{D_m v}rac{\Delta ho}{ ho}$

Copper electroplating system

• Mass transfer phenomena

= Diffusion + Convection + Electric migration

Not exists in heat transfer, suppressed by H_2SO_4

• Advantage of mass transfer experiment

- Simple experimental setup
- No heat leakage
- No radiation heat transfer

Experimental methodology

• Analogy between heat transfer and mass transfer

Anode influence in mass transfer system

- Position and distance of anode affects the measurement
 - High concentration gradient of cupric ions is induced near the anode
 - In conventional mass transfer experiment, anode is located away from the cathode to preserve stable concentration gradient

- However, to simulate temperature gradient in thermocline TES
 - Should induces and maintains concentration gradient by maximizing anode influence.

Apparatus and test matrix

D (m)	<i>d</i> (m)	<i>H</i> (m)	Fluid velocity (mm/s)
0.03	0.025	0.25	2.5, 10

- 0.05M and 1.5M of CuSO₄-H₂SO₄ solution
- Fluid is pushed from the bottom to the top (discharging mode in TES)
- Voltage control ٠

(constant temperature cathode condition)

Anode is located just below cathodes •

- To supply high concentration of cupric ion.
- High density of cupric ions simulates the cold fluid in the TES system

Variation of measured current according to the height

- Height, electric current
 - Front cathode meets the most abundant cupric ions —
 - Concentration of the cupric ions gradually decrease.

KNS Autumn meeting Changwon, Korea, October 19-21, 2022

• Variation of local bulk concentration of cupric ion

- Local bulk concentration = $\frac{\int I \, dt}{F \times n \times \text{Local volume}}$,
- *I* : the measured current (*C/s*)
- F: faraday constant (96,485 *C/mol*)
- *n* : the number of electrons in charge transfer reaction

• Similar to the temperature gradient in the thermocline TES system.

• Variation of current with time

- Time goes by, electric current at high positioned cathodes increases.
- Concentration gradient moves by flow

KNS Autumn meeting Changwon, Korea, October 19–21, 2022

Conclusions

- Temperature gradient zone was simulated by using mass transfer experiment
 - Concentration gradient zone was formed by anode influence
 - Concentration gradient was moved by flow
- Basic step for development of alternative experimental method for TES
 - Not perfect to simulate temperature gradient
 - Further study needs to be performed under more sophisticated experimental conditions
 - Realistic packed bed configuration
 - Reducing uncertainty of calculated concentration

Department of Nuclear Engineering

Thank you for your attention

References

[1] A. Bruch, S. Molina, T. Esence, J. F. Fourmigue, R. Couturier, Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system, Renewable Energy, Vol. 103, pp. 277–285, 2017.

[2] J. Y. Heo, J. H. Park, Y. J. Chae, S. H. Oh, S. Y. Lee, J. Y. Lee, N. Gnanapragasam, J. I. Lee, Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors, Nuclear Engineering and Technology, Vol. 53, pp. 2427–2444, 2021.

[3] C. Xu, Z. Wang, Y. He, X. Li, F. Bai, Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system, Applied Energy, Vol. 92, pp. 65–75, 2012.

[4] G. Li, Sensible heat thermal storage energy and exergy performance evaluations, Renewable and Sustainable Energy Review, Vol. 53, pp. 897–923, 2016.

[5] A. Bejan, Convection Heat Transfer, fourth ed. Wiley & Sons, New Jersey, 2003.

[6] C.W. Tobias and R.G. Hickman, Ionic mass transport by combined free and forced convection, International Journal of Research in Physical Chemistry Chemical Physics, Vol. 229, pp. 145–166, 1965.

[7] S.H. Ko et al., Applications of electroplating method for heat transfer studies using analogy concept, Nuclear Engineering and Technology, Vol. 38, pp. 251–258, 2006.

[8] H.K. Park and B.J. Chung, Mass Transfer Experiments for the Heat Load during In-Vessel Retention of Core Melt, Nuclear Engineering and Technology, Vol. 48, pp. 906–914, 2016.

[9] H.H. Ahn, J.Y. Moon, B.J. Chung, Anode influence on the electrochemical realization of packed bed heat transfer, Heat and Mass Transfer, Vol. 57, pp. 1685–1695, 2021.

Department of Nuclear Engineering