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1. Introduction 
 

Pool surface evaporation is a phenomenon of interest 
in various fields such as oceanography, atmospheric 
meteorology, chemistry, and nuclear engineering. In 
particular, in the field of nuclear engineering, interest in 
pool surface evaporation after Fukushima Daiichi 
Nuclear Power Unit 4 is increasing.  

In the thermal-hydraulics analysis code, the pool 
surface heat transfer model was derived from a similar 
concept. However, due to differences in model 
implementation methods and various additional effects 
each code shows different calculation results. This 
study analyzed the effect of 1) pool surface temperature, 
2) effective area between pool surface and atmosphere, 
and 3) suction effect on pool surface heat transfer model. 
For this analysis, the pool surface heat transfer model [1] 
based on HMTA (Heat and Mass Transfer Analogy) 
was implemented into the CAP code. And using this 
model as a default model, the effect of the above three 
on pool heat transfer was analyzed through comparing 
CAP calculation results and Boelter experiment [2]. 
 

2. Pool Surface Evaporation Model 
 

Figure 1 shows the distribution of the pressure and 
temperature near the pool surface. In the figure, the 
subscripts a, g, s, l, and gli refer air, gas-mixture, steam, 
liquid, and gas-liquid interfaces, respectively.  Heat and 
mass transfer between pool and atmosphere occurs 
through the pool surface. Equation (1) shows the heat 
flux which is transferred to the pool surface. 

 𝑞 = (𝑞 → + 𝑞 → )   (1) 
 

- q → : heat flux from atmosphere to the pool 
surface [W/m2] 

- q → : heat flux from pool to the pool surface 
[W/m2] 

 
The mass transfer can be calculated by dividing the 

heat flux (q ) by latent heat, or using HMTA. Eq. (2) 
shows mass flux, calculated using HMTA [2]. 

 𝛤 = ℎ (𝜌 @ − 𝜌  )   (2) 
 

- ℎ : mass transfer coefficient [m/s] 
- 𝜌 @ : steam density at pool surface [kg/m3] 
- 𝜌 : steam density at atmosphere [kg/m3] 

 
where, ℎ was calculated using below assumption: 
 

𝑆ℎ = / = 𝑁𝑢 = /    (3) 

 
- 𝐷 : diffusivity [m2/s] 
- 𝐿 : characteristic length [m] 

 
2.1 Pool Surface Temperature 

 
Equation (4) shows mass flux, calculated by dividing 

the heat flux by latent heat.  
 𝛤 = (𝑞 → + 𝑞 → )/ℎ    (4) 
 
where,  
 𝑞 → = ℎ → (𝑇 − 𝑇 )   (5) 
 𝑞 → = ℎ → (𝑇 − 𝑇 )   (6) 

 
Since Equations (2) and (4) must have the same value, 

the pool surface temperature (Tgli) is a value that 
satisfies both equations. Contrary of this, CONTEMPT-
LT assumes the pool surface temperature as pool bulk 
temperature. 
 
2.2 Effective Area 

 
Since the contact area between the pool surface and 

steam is equal to the total surface area multiplied by 
steam mole fraction, MARS and SPACE multiplied 
heat flux by steam mole fraction as in Equation (7). 

 𝑞 → = 𝑞 → (𝑃 @ /𝑃)   (7) 
 

- 𝑃 @ : steam pressure at pool surface [Pa] 
- 𝑃: total pressure [Pa] 

 
2.3 Suction Effect 

 
In this study, among suction effect model the 

Collier’s model [3] was used. Collier suction effect 
model is as follows: 
 ℎ′ = ℎ𝛷     (8) 

 
where,  
 𝛷 = .      (9) 
 𝜆 = →                  (10) 
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rate lower than that of model 4. It is noteworthy that 
model 4 predicted the experimental data more similarly 
than model 1. 

The effect on effective area can be confirmed in 
model 1 and model 2. In case of effective area is 
applied, the heat (𝑞 → ) becomes smaller (see Eq. (7)). 
Since 𝑞 →  is negative under the conditions of pool 
surface evaporation occurs, model 2, applying the 
effective area, predicted evaporation rate higher than 
model 1. However, the effective area had little effect on 
the evaporation rate. In this study, the effective area was 
implemented to affect only the heat flux as shown in Eq. 
(7), so there was no effect on the effective area in 
Model 5. 

Finally, the effect on the suction effect can be 
confirmed in model 1,3 and model 4,6. In case of the 
suction effect is applied, the heat transfer coefficient 
and the mass transfer coefficient decrease. Therefore, 
the model with the suction effect predicts a lower 
evaporation rate than the model without suction effect. 
It should be noted that the difference between model 1 
and 3 is significantly lower than that of between model 
4 and 6. This is because the effect on the suction effect 
is canceled in the process of calculating pool surface 
temperature by iterative method. In order for the 
evaporation rate to decrease, the heat transferred from 
pool to pool surface ( 𝑞 → ) must decrease, so the 
surface temperature is higher than before. As the pool 
surface temperature increases, the evaporation rate 
increases since steam density difference between the 
pool surface and the atmosphere increases.  

 

 
Fig. 4. Comparison Results (Model 1 ~ 3) 

 
Fig. 5. Comparison Results (Model 4 ~ 6) 
 

5. Conclusion 
 
In this study, the default pool surface heat transfer 

model was designed based on HMTA. In order to 
analyze the effects of 1) pool surface temperature, 2) 
effective area between the pool surface and the 
atmosphere, and 3) suction effect on surface heat 
transfer, 6 sub-models reflecting the above three effects 
in the default model were implemented in CAP. These 
sub-models were compared with the Boelter pool 
evaporation experiment. The pool surface temperature 
(Tgli) had the greatest effect on the pool evaporation 
among the three differences. The effective area had 
little effect on the pool evaporation. Finally, in case of 
pool surface temperature was calculated iterative, the 
suction effect had little effect on pool evaporation. On 
the other hand, the suction effect had a great effect on 
the pool evaporation, assuming that the pool surface 
temperature is same as the pool temperature. 
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