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1. Introduction 

 

Modern Nuclear Power Plants (NPPs) are developed 

with safety as the main priority. During normal 

operation, operators in the Main Control Room (MCR) 

continuously monitor a myriad of Nuclear Power Plant 

(NPP) parameters in order to keep them within their 

nominal conditions. Under accident conditions, MCR 

operators should comprehend the current plant 

dynamics in real-time. This includes accident 

diagnosis following an emergency situation for which 

timing and precision are key to the decision-making 

process to keep the NPP safe.  

However, under accident conditions, the operators are 

exposed to stressful conditions and may need to take 

split-second decisions. To expedite the decision-

making process and simultaneously minimize the 

possibility of human error, a machine learning (ML) 

prediction model is proposed using a multi-step 

artificial neural network. The ML model is trained to 

mimic the most accurate NPP system response 

generated using a physics-based model for a set of 

initial operating and boundary conditions. The main 

goal of this research is to develop an ML model for 

real-time prediction of NPP response under accident 

conditions to help operators in the MCR expedite the 

decision-making process [1]. Some of the most 

challenging conditions for the operators are the Loss 

of Coolant Accident (LOCA) alongside with an 

extended Station Blackout (SBO) which could 

potentially lead to a core meltdown [2] as evident by 

the Fukushima Daichii accident. As a starting point of 

this research, we start by considering the large break 

loss of coolant accident (LBLOCA) as a bounding 

accident scenario. 

ML is actively being sought for the development of 

digital twins [3], as well as the autonomous control of 

nuclear power plants in an attempt to avoid the 

possibility of human errors [4]. For example a ML 

model has been developed by implementing a neural 

network along with the backpropagation algorithm to 

help in mitigating a Loss of Feedwater (LOFW) 

accident in multi-application small light water reactor 

[5]. A fast running model Conditional Auto-Encoder 

(CAE), known as an auto-associative neural network 

(AANN), can predict the pressure as well as Peak 

Cladding Temperature (PCT) in ARP1400 under a 

Small Break LOCA (SBLOCA) scenario [6]. 

Similarly, an ANN model that can also support the 

implementation of the diverse and flexible coping 

strategy (FLEX) has been developed for an extended 

SBO [7], [8]. Previously, artificial neural networks 

(ANNs) like deep learning neural networks (DLNNs), 

and the convolutional neural networks (CNNs) have 

been explored to predict the critical heat flux (CHF) of 

water flowing in reactor vessel channels [9] without 

solving the underlying physics. In the wake of the 

accident at the Fukushima Daiichi NPP researchers 

explored the use of codes like MELCOR and MAAP 

to simulate the core behaviour under severe accident 

conditions, and use the generated databases to develop 

and train ML models capable of predicting the NPP 

response at a fraction of the time needed using 

conventional methods and hence serving as an aiding 

tool for the decision-making process [10]. ML models 

have also been used to predict the diffusion and 

transport of radioactive materials in the atmosphere 

[11].  

Since accident prevention is a top most priority for 

MCR operators, Korea Hydro & Nuclear Power Co., 

Ltd. (KHNP) developed an early warning system at the 

headquarters in Gyeongju. The system monitors and 

diagnoses 24 nuclear power plants in real-time and 

uses ML to detect slight fault symptoms of equipment 

in advance which allows the operators to prevent or 

prepare for failure and hence minimize losses caused 

by unplanned maintenance [12]. Currently, engineers 

from the Central Research Institute (CRI) KHNP are 

working on developing of ML model that will predict 

NPP response for an accident scenario. 

Given the potential benefits of artificial intelligence 

(AI) at large and specifically of machine learning, this 

study builds on the work of Sallehhudin and Diab [13], 

and follows the work of Radaideh [14] to develop a 

time-series forecasting ML model capable of 

predicting the NPP real-time response for APR1400 

undergoing a LBLOCA. 

 

2. Methodology 

 

This section describes the methodology applied in this 

work which involves three basic steps namely the 

development of a thermal-hydraulic model, an 

uncertainty quantification framework and a machine 

learning model. For the machine learning model to 

predict the NPP response, it is necessary to generate a 

large enough database using the thermal hydraulics 

model which in turn is driven by the uncertainty 

quantification framework as illustrated in Figure 1.  
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Figure 1. Data Processing Flowchart 

 

2.1. Thermal- Hydraulic Model 

 

The thermal-hydraulic model is developed in MARS-

KS system code version 1.4, to simulate the nuclear 

power plant response under LBLOCA conditions [13]. 

The nodalization shown in Figure 2 contains key 

systems and components of APR1400: the Reactor 

Coolant System (RCS) with a reactor pressure vessel 

(RPV), hot legs, cold legs, reactor circulating pumps 

(RCPs), pressurizer (PRZ) and two steam generators 

(SGs) along with main steam lines and safety valves. 

The core inlet and outlet nozzles, downcomer, and 

lower and upper plenum as part of the reactor vessel 

are modelled as well. The reactor core is represented 

using an average channel and a hot channel, each is 

discretized using 20 vertical nodes. 

The Emergency Core Cooling System (ECCS) of the 

APR1400 is represented by modelled Safety Injection 

System (SIS). The entry location of SIS is the upper 

annulus. The SIS contains two systems components the 

Safety Injection Tanks (SITs) and the Safety Injection 

Pumps (SIPs). The SITs tanks are connected to the 

upper annulus using valves divided into two parts 

representing the operation of the fluidic device. In 

accordance with the conservative assumption of 

APR1400 Design Control Document (DCD) for 

LBLOCA evaluation, two out of four SIPs are 

available during the accident. 

For conservatism, the negative reactivity insertion due 

to the control rod insertion is not taken into 

consideration due to the APR1400 DCD conservative 

assumption. 

The LOCA is represented as two trip valves connected 

to the cold leg after pump discharge. When a double-

ended guillotine break is initiated, flow is directed 

from the vessel and cold leg to the time-dependent 

volumes attached to each valve. 

 
Figure 2. APR1400 Nodalization for the LBLOCA 

Thermal-Hydraulic Model [12] 

 

2.2. Data Generation 

 

The Best Estimate Plus Uncertainty (BEPU) 

methodology is applied by propagating key uncertain 

parameters into the thermal-hydraulics model as listed 

in Table 1. These uncertain parameters are derived 

from the Phenomena Identification and Ranking Table 

(PIRT) developed for LBLOCA scenario [13].  

To automate the process of uncertainty quantification, 

the Uncertainty Quantification (UQ) framework, is 

developed by loosely coupling the statistical tool, 

DAKOTA [15], to the thermal-hydraulic system code, 

MARS-KS, via a Python script. The Monte Carlo (MC) 

random sampling technique along with the Latin 

Hyper-Cube method is used to define a combination of 

input parameters that scan the spectrum of all possible 

initial and boundary conditions for the thermal-

hydraulics model.  

DAKOTA then passes the uncertain parameters to the 

MARS-KS code by reading and writing text files in the 

developed framework. The uncertain parameters are 

written into the steady state and transient MARS-KS 

input files and output files from MARS-KS 

calculations are passed back to the DAKOTA results 

file. A Python script is responsible for the input 

preparation, data exchange between Dakota and 

MARS-KS, as well as the output post-processing 

before passing the sample into the data frame as shown 

in Figure 3. 

The Latin Hypercube Sampling (LHS) method was 

used to cover the distribution with fewer samples and 

hence reduce the computational burden of 

conventional Monte Carlo techniques such as the 

bootstrap [17].  
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Table 1. Normalized Uncertain Parameters [13] 

#    Parameter Description Mean, μ Standard deviation, σ Range, Lhigh-Llow 

1 Core power 1.0 0.01 0.98–1.02 

2 Groeneveld-CHF 1.0 0.414 0.173–1.827 

3 Chen nucleate boiling HTC 1.0 0.234 0.553–1.467 

4 Transition boiling HTC 1.0 0.230 0.54–1.46 

5 Dittus-Boelter liquid HTC 1.0 0.196 0.607–1.393 

6 Dittus-Boelter vapor HTC 1.0 0.196 0.607–1.393 

7 Film boiling HTC 1.0 0.287 0.426–1.574 

8 Break discharge coefficient 1.0 0.115 0.77–1.23 

9 Decay heat 1.0 0.033 0.934–1.066 

10 Gap conductance 1.0 0.289 0.421–1.579 

11 SIT actuation pressure(MPa) 1.0 0.025 0.949–1.051 

12 SIT water inventory (m3) 1.0 0.046 0.907–1.093 

13 SIT loss coefficient 1.0 0.20 0.6–1.4 

14 Pressurizer pressure (MPa) 1.0 0.113 0.77–1.23 

15 Fuel thermal conductivity - - 0.847–1.153 

16 Pump two phase head multiplier - - 0.0–1.0 

17 Pump two phase torque multiplier - - 0.0–1.0 

18 SIT water temperature (K) - - 0.955–1.045 

19 SIP (IRWST) water temperature (K) - - 0.936–1.064 

 

 

 

 
 

Figure 3. Uncertainty Propagation Framework Coupling 

MARS-KS and DAKOTA [16] 

For LBLOCA accident scenario, PCT is one of the 

most important parameters used as a safety acceptance 

criterion. Based on the PIRT, the most relevant 

uncertain parameters that dictate the NPPs response 

have been identified and used for accurate prediction 

of the PCT. A list of the correlation coefficient of those 

key system parameters with PCT is shown in Figure 4. 

The most influential parameters are SIP, SIT flow, 

break flow, SIT temperature, and decay heat. 

 

 

 

 

 
 

Figure 4. Parameter Correlation Coefficient with the Peak 

Cladding Temperature 

2.3. Machine Learning Model 

 

In contrast to the previous work by Sallehhudin and 

Diab [12] where an Artificial Neural Network (ANN) 

was used for the prediction of PCT for different initial 

and boundary conditions, this research is aimed at 

predicting the development of the cladding 

temperature over time as the accident progresses. For 

this class of problems, time series forecasting based on 

Recurrent Neural Network (RNN) is the most effective. 

Two different RNNs are used in this study, namely: 

• Long Short Term Memory (LSTM) 

• Gated Recurrent Unit (GRU) 
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The developed RNN models use historical 

observations (in this case 5 seconds of simulation time 

represented by 10 data points), for the prediction of the 

next data point of the NPP response [18]. 

To tune the ML models to the data at hand, the Talos 

optimization tool was used to arrive at the best 

combination of optimized hyper-parameters. The 

hyper-parameters dictionary is listed in Table 3.  

 
Table 1. List of Hyper-Parameters 

Number of neurons in 1st layer 13, 25, 50 

Number of neurons in a final layer 1 

Number of hidden layers 1, 2, 3 

Optimizer  Adam, Nadam, 

SGD, RMSprop 

Activation functions ReLU, Tanh, 

Sigmoid, Softmax 

Recurrent activation functions Sigmoid, ReLU, 
Tanh 

Dropout 0, 0.1, 0.2 

Batch size 64, 100, 200 

Number of iterations 15, 20, 35 

Kernel regulariser l1 1x10-4, 1x10-5, 

1x10-6 

 

 

 

3. Results and Discussion 

 

The MARS-KS thermal-hydraulic model, prepared 

with uncertainty parameters was run within DAKOTA 

Uncertainty Quantification framework multiple times 

until a statistically representative sample size was 

achieved.  The size of the database obtained by 

DAKOTA is 3469 samples as shown in Figure 5. 

Following the USNRC rule [19] of 95% probability 

and 95% confidence level, the most probable PCT 

curve was identified. The sample represented by this 

curve was dropped from the training dataset and saved 

for validation of the model at a later stage.  

From a safety perspective, the ML model accuracy is 

most important at the higher end of the range of PCT 

observed. To enhance the prediction accuracy, the 

oversampling technique was applied by replicating 200 

samples including the highest PCT. This oversampling 

method, increases the chances of the model being 

trained to predict PCT in the upper range of the dataset. 

After training the different RNN models, they were 

used to predict the most probable sample. The results 

of the prediction can be seen in Figure 6. The 

performance of the two RNN models is further 

assessed by comparing the mean absolute error, root 

mean squared error, and coefficient of determination 

as listed in Table 4. Comparing GRU, and LSTM 

models, the LSTM model outperforms the GRU by a 

small margin.   

Clearly, further tuning is needed for better prediction 

since both models are under-predicting the actual value 

of PCT. One way to improve the prediction is to train 

the model using a larger dataset which is currently 

being generated.  

 
 

Figure 5. PCT Database  

 

Table 4. ML Model Evaluation Metrics 

 RMSE MAE R2 

GRU 40 28 0.989 

LSTM 35 25 0.992 

 

 

 
Figure 6. ML Models Prediction of the Most Probable PCT 

 
4. Conclusion 

 
Machine Learning can be a useful tool for the 

prediction of the critical NPP parameters during 

accident conditions. The calculations showed that the 

best-performing LSTM model is capable of predicting 

PCT with reasonable error, but for accurate prediction, 

a bigger dataset is required and the models need further 

tuning to improve their performance. 



KNS Autumn Meeting 2022, October 19-21, CECO 

 

 

5. References 

 

[1] J. Bae, G. Kim, S. Jun Lee, Real-time prediction 

of nuclear power plant parameter trends following 

operator actions Expert Systems With 

Applications 186 (2021) 115848 

[2] Liang Hu, Yapei Zhang, Longze Li, G.H. Su, 

Wenxi Tian, Suizheng Qiu, Investigation of 

severe accident scenario of PWR response to 

LOCA along with SBO, Progress in Nuclear 

Energy, Volume 83, 2015, Pages 159-166, ISSN 

0149-1970, 

[3] Joomyung Lee, Linyu Lin, Paridhi Athe, Nam 

Dinh, Development of the Machine Learning-

based Safety Significant Factor Inference Model 

for Diagnosis in Autonomous Control System, 

Annals of Nuclear Energy, Volume 162, 2021, 

108443, ISSN 0306-4549, 

https://doi.org/10.1016/j.anucene.2021.108443. 

[4] H. Basher,  J. S. Neal, Autonomous control of 

nuclear power plants, Nuclear Science and 

Technology Division, 2003, ORNL/TM-2003/252 

[5] Mario Gomez Fernandez, Akira Tokuhiro, Kent 

Welter, Qiao Wu, Nuclear energy system’s 

behavior and decision making using machine 

learning, Nuclear Engineering and Design, 

Volume 324, 2017, Pages 27-34, ISSN0029-5493, 

https://doi.org/10.1016/j.nucengdes.2017.08.020. 

[6] H. Kim, J. Cho and J. Park, "Application of a Deep 

Learning Technique to the Development of a Fast 

Accident Scenario Identifier," in IEEE Access, vol. 

8, pp. 177363-177373, 2020, doi: 

10.1109/ACCESS.2020.3026104. 

[7] Salama Alketbi and A. Diab, Using Artificial 

Intelligence to Identify the Success Window of 

FLEX Strategy under an Extended Station 

Blackout, Nuclear Engineering and Design 382 

(2021) 111368, doi: 

10.1016/j.nucengdes.2021.111368. 

[8] O. S. ALAtawneh, and A. Diab, A SE Approach 

to Predict the Peak Cladding Temperature Using 

Artificial Neural Network., Journal of the Korean 

Society of Systems Engineering 16, no. 2 

(December 31, 2020): 67–77. 

doi:10.14248/JKOSSE.2020.16.2.067. 

[9] W. Sallehhudin, S. AlKetbi, O. AlAtawneh, A. 

Diab, Prediction of Critical Heat Flux (CHF) 

Using Artificial Neural Network, Transactions of 

the Korean Nuclear Society Virtual Autumn 

Meeting December 17-18, 2020 

[10] JinHo Song, KwangSoon Ha, A simulation and 

machine learning informed diagnosis of the severe 

accidents, Nuclear Engineering and Design, 

Volume 395, 2022, 111881, ISSN 0029-5493, 

https://doi.org/10.1016/j.nucengdes.2022.111881. 

[11] El-Hameed, A.A.; Kim, J. Machine Learning-

Based Classification and Regression Approach for 

Sustainable Disaster Management: The Case 

Study of APR1400 in Korea. Sustainability 2021, 

13, 9712. https://doi.org/10.3390/su13179712 

[12]  J. H. Min , D. Kim, C. Park Demonstration of the 

validity of the early warning in online monitoring 

system for nuclear power plants Nuclear 

Engineering and Design Volume 349, 1 August 

2019, Pages56-62 

https://doi.org/10.1016/j.nucengdes.2019.04.028 

[13] W. Sallehhudin, A. Diab, Using Machine 

Learning to Predict the Fuel Peak Cladding 

Temperature for a Large Break Loss of Coolant 

Accident, Front. Energy Res., 08 October 2021 

Sec. Nuclear Energy,  

https://doi.org/10.3389/fenrg.2021.755638 

[14] Radaideh, C. Pigg, T. Kozlowski, Y. Deng, A. Qu. 

Neural-based time series forecasting of loss of 

coolant accidents in nuclear power plants. Expert 

Systems with Applications 160 (2020) 113699. 

[15] B.M. Adams, L.E. Bauman, W.J. Bohnhoff, K.R. 

Dalbey, M.S. Ebeida, J.P. Eddy, M.S. Eldred, P.D. 

Hough, K.T. Hu, J.D Jakeman, J.A. Stephens, L.P. 

Swiler, D.M. Vigil, and , T.M. Wildey, “Dakota, 

A Multilevel Parallel Object-Oriented Framework 

for Design Optimization, Parameter Estimation, 

Uncertainty Quantification, and Sensitivity 

Analysis: Version 6.9 User’s Manual,” Sandia 

Technical Report SAND2014-4633, 2018. 

[16] J. Ricardo Tavares de Sousa, Aya Diab. (2019). 

Uncertainty Analysis for  

Station Blackout Scenario, 

한국전산유체공학회지, 24(4), 60-68. 

[17] Hines, J.W., Garvey, D., Seibert, R., Usynin, A., 

2008, Technical Review of On-Line Monitoring 

Techniques for Performance Assessment: Volume 

2 Theoretical Issues, NUREG/CR-6895  

[18] Nguyen, H.-P., Liu, J., & Zio, E. (2020). A long-

term prediction approach based on longshort-term 

memory neural networks with automatic 

parameter optimization byTree-structured Parzen 

Estimator and applied to time-series data of NPP 

steamgenerators. Applied Soft Computing, 89, 

106116. 

https://doi.org/10.1016/j.asoc.2020.106116 

[19] USNRC, USNRC Regulatory Guide 1.157, Best 

Estimate Calculation of Emergency Core Cooling 

System Performance, U.S Office of Nuclear 

Regulatory Research, 1989. 

https://doi.org/10.1016/j.anucene.2021.108443
https://doi.org/10.1016/j.nucengdes.2019.04.028
https://doi.org/10.3389/fenrg.2021.755638
https://doi.org/10.1016/j.asoc.2020.106116

