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Introduction

▪ Loss-of-coolant accident (LOCA) – is analyzed for APR-1400 nuclear power plant 
(NPP) system response using the Best Estimate Plus Uncertainty (BEPU)
approach.

▪ A thermal-hydraulics model of APR-1400 is developed with one-way coupling with 
point kinetics model using MARS-KS

▪ Data generation and uncertainty propagation is conducted by coupling MARS 
with Dakota. 

▪ Machine Learning (ML) is used to predict the real time NPP response using the 
database created via the uncertainty quantification framework.
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Thermal-Hydraulic Model
APR-1400 Nodalization

Reactor Pressure 

Vessel (RPV)

• The core is represented using

an average and a hot channel,

surrounded by an annular core

shroud together with the core

bypass

• The core connects to an upper

plenum and a lower plenum

• Two hot legs lead the coolant

from the RPV to the SGs u-

tubes, four cold legs connect

the RCPs to the downcomer

• The downcomer is modeled

using annulus six components

Steam Generators 

(SGs)

• Two SGs - each connected to

the RPV via one hot leg and

two cold leg

• Heat generated on the primary

side is transferred to the SGs

via the u-tubes

• The u-tube section is modeled

with equivalent heat transfer

and pressure drop conditions

• Secondary water is provided

by the Main Feedwater System

(MFWS) as boundary condition

• Steam generated in the SGs is

directed via the main steam

line to the turbine modeled as

a boundary condition

• Other important components of

the SGs are: evaporator,

separator, dryer, dome

Modelled Safety 

Injection System (SIS)

• The SIS contains two

systems components the

Safety Injection Tanks (SITs)

and the Safety Injection

Pumps (SIPs). The SITs

tanks are connected to the

upper annulus using valves

divided into two parts

representing the operation of

the fluidic device.

Break

• The LOCA is represented as

two trip valves connected to

the cold leg after pump

discharge. When a double-

ended guillotine break is

initiated, flow is directed from

the vessel and cold leg to the

time-dependent volumes

attached to each valve.

5

TH



o The Loss of Coolant Accident (LOCA) is assumed to result from a double-ended guillotine break of the cold leg after pump

discharge. Such an event with a concurrent loss of offsite power (LOOP) is considered to be the most limiting case. The event is

not anticipated during the life of the plant.
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Parameters MARS DCD Error (%)

Power (MWt) 4062.66 4062.0 0.0

RCP flowrate (kg/s) 5272.0 5250.0 0.4

Core flowrate (kg/s) 20367.0 20361.0 0.03

Primary pressure (MPa) 15.52 15.51 0.01

Core inlet temperature (K) 564.3 563.8 0.12

Core outlet temperature (K) 598.4 597.1 0.16

Upper head temperature (K) 563.9 584.5 3.53

Pressurizer level (m) 8.22 8.18 0.5

Secondary pressure (MPa) 6.90 6.86 0.58

Hot rod fuel temperature (K) 1988.7 1985.2 0.18

Thermal-Hydraulic Model
Model Validation*

EVENT DCD MODEL

Break Occurs 0 0

Reactor Trip signal Occurs 6.2 5.8

SI Injection signal Occurs 6.2 5.8

SIT Discharge Begins

SIT 1 (Broken Cold Leg Side) 14.4 16.0

SIT 2 (Broken Loop Intact Cold Leg Side) 14.4 16.0

SIT 3 (Intact Loop Intact Cold Leg Side 1) 14.4 16.0

SIT 4 (Intact Loop Intact Cold Leg Side 2) 14.4 16.0

Pumped SI Injection 46.2 48.0

SIT Empty Time

SIT 1 (Broken Cold Leg Side) 201.5 204.0

SIT 2 (Broken Loop Intact Cold Leg Side) 201.5 204.0

SIT 3 (Intact Loop Intact Cold Leg Side 1) 201.5 204.0

SIT 3 (Intact Loop Intact Cold Leg Side 2) 201.5 204.0

o Steady State Validation oTransient Validation

*APR-1400 Design Control Document, Tier 2, Chapter 15, “Loss-of-Coolant Accidents

Resulting from the Spectrum of Postulated Piping Breaks within the Reactor Coolant 

Pressure Boundary” (APR1400-K-X-FS-13002, Revision 0, September 2013)
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Thermal-Hydraulic Model
NPP Response
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Uncertainty Quantification*
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UQ

*W. Sallehhudin and A. Diab, “Using Machine Learning to Predict the Fuel Peak Cladding Temperature for a Large Break Loss of Coolant Accident,” Front Energy Res, vol. 9, Oct. 2021, 

doi: 10.3389/fenrg.2021.755638.
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Derive Key 

Uncertain 

Parameters (UP)
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Deterministic Approach

#   Parameter Description Mean, μ PDF Standard deviation, σ Range, Lhigh-Llow

1 Core power 1.0 Normal 0.01 0.98–1.02

2 Groeneveld-CHF 1.0 Normal 0.414 0.173–1.827

3 Chen nucleate boiling HTC 1.0 Normal 0.234 0.553–1.467

4 Transition boiling HTC 1.0 Normal 0.230 0.54–1.46

5 Dittus-Boelter liquid HTC 1.0 Normal 0.196 0.607–1.393

6 Dittus-Boelter vapor HTC 1.0 Normal 0.196 0.607–1.393

7 Film boiling HTC 1.0 Normal 0.287 0.426–1.574

8 Break discharge coefficient 1.0 Normal 0.115 0.77–1.23

9 Decay heat 1.0 Normal 0.033 0.934–1.066

10 Gap conductance 1.0 Normal 0.289 0.421–1.579

11 SIT actuation pressure(MPa) 1.0 Normal 0.025 0.949–1.051

12 SIT water inventory (m3) 1.0 Normal 0.046 0.907–1.093

13 SIT loss coefficient 1.0 Normal 0.20 0.6–1.4

14 Pressurizer pressure (MPa) 1.0 Normal 0.113 0.77–1.23

15 Fuel thermal conductivity - Uniform - 0.847–1.153

16 Pump two phase head multiplier - Uniform - 0.0–1.0

17 Pump two phase torque multiplier - Uniform - 0.0–1.0

18 SIT water temperature (K) - Uniform - 0.955–1.045

19 SIP (IRWST) water temperature (K) - Uniform - 0.936–1.064
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ML Model Development ML
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ReLU, Tanh, 

Sigmoid, Softmax
Relu

Recurrent 
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Sigmoid, ReLU, 

Tanh
Relu

Optimizer
Adam, Nadam, 

SGD, RMSprop
Adam

Kernel 

regularizers

N
u

m
e

ri
c
a

l

1x10-4, 1x10-5, 

1x10-6
L1(1x10-6)

First Neuron 10-50 13

Hidden layers 1-3 1

No neurons

hidden lyer
13-100 26

Batch size 64-200 64

Epoch 10-100 20

Dropout 0.01-0.1 0

Learning rate 0.0001-0.01 0.01
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ML Model Prediction ResultsML

ML MODEL EVALUATION METRICS

Parameter
ML 

Models
RMSE MAE R2

PCT
GRU 0.043 0.027 0.980

LSTM 0.047 0.028 0.976

Pressure
GRU 0.039 0.012 0.980

LSTM 0.039 0.011 0.980

SIT
GRU 0.019 0.007 0.994

LSTM 0.019 0.005 0.994

Power
GRU 0.012 0.003 0.899

LSTM 0.011 0.002 0.920
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Conclusions
o In this work, the LOCA accident scenario was investigated using a physics-based

approach (TH model) and a data-driven approach (ML model).

o An uncertainty quantification framework was developed to assess the uncertainty in the
NPP response under the different initial, boundary, and operating conditions, as well as
thermo-physical properties, and manufacturing tolerances. The generated database is
used to train the ML model.

o Developed Machine learning model predicted NPP response under accident conditions
with reasonable accuracy. ML model is currently being tuned to further enhance its
performance.

o This research is aimed to serve as a first step towards the development of a real-time aid
for operators to expedite the decision-making process under accident conditions.

Thank you!

감사합니다



Acknowledgement

19

This research was supported by the 2022 Research Fund of the KEPCO 

International Nuclear Graduate School (KINGS), the Republic of Korea.

Special thanks

Wazif Sallehhudin, Felix Wapachi, Kajetan Rey, and Jan Hruskovic


