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1. Introduction 

 
In nuclear power plants (NPPs), events occur due to 

various pattern (i.e., station blackout, loss of coolant 
accident, etc.). Among the numerous events, leaks are 
serious accidents. Leakage can be caused by 
deterioration of NPPs, material deterioration at welds 
between pipes, or rupture due to vibration of equipment. 
If the small leakage accident by these causes is not 
identified quickly by the operator and the leakage 
accident worsens, the NPPs is shut down or if it 
worsens, it may lead to casualties, leading to a 
dangerous situation. To prevent the above dangerous 
situation, it is important to detect leaks quickly and 
quantify leakages. This is even more essential in NPPs 
where safety is of more importance. Therefore, it is 
important to predict the initial humidity required to 
quantify leakage [1, 2]. In this paper, we present a 
system for predicting initial relative humidity through 
artificial intelligence (AI) to quantify small leakage. In 
this study, the regression method is used among the 
learning fields of AI to predict the initial relative 
humidity. Among the AI methods, long short-term 
memory (LSTM) and bidirectional LSTM (Bi-LSTM) 
were used for AI learning. And the data used for AI 
learning is the CUPID thermal hydrostatic code. After 
AI learning, performance was evaluated through three 
performance evaluation indicators. The best method 
was Bi-LSTM with superior results. In the future, it is 
expected to help predict the initial relative humidity for 
early detection and quantifying leakages in NPPs. 

 
2. Methods 

 
2.1 LSTM 

 
LSTM is known as a time series-based AI method. In 

the conventional recurrent neural network method, 
there is no long-term dependence on storing old 
information, and LSTM is a method that overcomes the 
disadvantage of not being able to remember as it gets 
later from the output of the recurrent neural network [3]. 
The structure of LSTM is shown in Fig. 1. LSTM has 
four characteristic layers. 1) Cell state, 2) Forget gate, 
3) Input gate, 4) Output gate. 

First, the cell state is divided into a long-term state ct 
and a short-term state ht. 

Second, the forget gate is a gate that decides whether 
to selectively forget information. It is calculated 

through the sigmoid function. The forget gate is shown 
in Eq. (1). 

1( [ , ] )t f t t ff W h x b      (1) 

 
Third, the input gate plays a role in determining the 

input information to be stored in the cell state among 
the input information. After that, a new vector is 
formed on the tanh layer. The input gate is shown in Eq. 
(2). 

 

1( [ , ] )t i t t ii W h x b      (2) 

 
Finally, the output gate proceeds to the next cell by 

updating the output value in the cell state. Thereafter, 
the same process is performed in the next cell. The 
output gate is shown in Eq. (3). 
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Fig. 1. Structure of LSTM [4].  

 
2.2 Bi-LSTM 
 

The Bi-LSTM is a method that adds an LSTM layer 
that proceeds in the reverse direction to the existing 
LSTM structure. The final hidden state outputs a vector 
linking the hidden states of two LSTMs. Because 
LSTMs are input sequentially, there is a gradient 
vanishing problem in which the output tends to 
converge based on the previous pattern. To solve this 
problem, Bi-LSTM has the advantage that past 
information is not lost even if the layer is deep by 
adding backward propagation to the forward 
propagation [5]. The Bi-LSTM structure is shown in 
Fig. 2. 
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Fig. 2. Structure of Bi-LSTM [6]. 
 

3. Data Processing 
 

CUPID code is a code for reactor equipment analysis 
at Korea Atomic Energy Research Institute (KAERI). It 
is a three-dimensional high precision thermal hydraulic 
analysis code that can describe two-phase flow by 
adopting a 2 fluid, 3 field model to analyze two-phase 
flow [7]. In this study, data simulating a small leakage 
using the CUPID code was used. The figure of the 
simulated pipe is shown in Fig. 3. 

 

 
Fig. 3. Structure of simulated small pipe for AI learning.  

 
The data simulated in the CUPID code was 

preprocessed and utilized for AI learning data.  
Data preprocessing proceeds with 1) variable 

selection, 2) normalization, and 3) time series 
processing using sliding window technique. 

First, the important variables were selected to 
facilitate the AI learning of CUPID code data. This 
process has a positive impact on performance by 
eliminating unnecessary variables. 

Second, through normalization, the value of the data 
is adjusted to a value between 0 and 1. The 
normalization reduces the range of high changes and 
acts as good input for AI learning in a specific range. 
This is because when carrying out predictions, a large 
amount of specific data can negatively affect the 
prediction.  

Finally, the CUPID code data simulated in this study 
is data representing the humidity spread inside the pipe 
over time. Accordingly, it was classified into time 
series using the sliding window technique. For data 
with all three procedures above, the temperature was 
simulated in units of 5℃ from 60 to 100℃ and the 
initial humidity was simulated by 5% from 60 to 90%. 

Table I shows the data length when relative humidity is 
fixed and temperature changes among many simulated 
cases. 
 

Table I: Data construction 

Input relative 
humidity (%)

Temperature 
(℃) 

Data length 

60 

60 

26,658 

65 

70 

75 

80 

85 

90 

95 

100 
 

 
4. Prediction Result 

 
In this study, the initial humidity prediction for 

quantifying leakage was performed using AI learning. 
The initial relative humidity prediction performance 
was compared using LSTM and Bi-LSTM AI methods, 
and AI learning was conducted using CUPID code data. 
To compare prediction performance, each layer of each 
AI model is set up with the same form. And, in general, 
the larger the batch size, the faster the learning rate, but 
the learning instability may increase relatively. 
Therefore, the batch size was adopted as 32. In addition, 
the number of epochs for each method used the early 
stop method to prevent overfitting. And, patience was 
set to 20 to prevent underfitting due to early stopping. 
When evaluating the prediction performance, mean 
squared error (MSE), mean absolute error (MAE), and 
root mean squared error (RMSE) were used as 
evaluation indicators. The error for the predictive 
performance for each method is shown in Table Ⅱ. 
Each indicator is calculated as Eq. (4), (5) and (6).  
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Figs. 4 and 5 show the graph showing the prediction 

results by pulling out an untrained case. In the case 
taken in the figure, the initial relative humidity was 
fixed at 90 percent and the initial temperature was 
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adjusted. In the graph, the blue dot indicates the initial 
humidity for the actual initial humidity, and the red dot 
indicates the initial humidity as a result of the 
prediction model.  
 

 
 
Fig. 4. Initial relative humidity prediction result of LSTM 
method. 
 

 
 
Fig. 5. Initial relative humidity prediction result of Bi-LSTM 
method. 

 

Table Ⅱ: AI method prediction result 

 
Result 

LSTM Bi-LSTM 
MAE (%) 0.8423 0.7351 
MSE (%) 0.8151 0.6978 

RMSE (%) 0.8566 0.7475 
 

5. Conclusion 
 

In this study, the prediction of initial humidity for 
quantifying leakage was conducted using AI methods. 
The used AI methods are LSTM and Bi-LSTM. As a 
result of the prediction, Bi-LSTM learning using not 
only forward propagation but also backpropagation 
showed superior performance. In the future, it is 
expected that the performance will be further improved 
by applying the attention mechanism to the Bi-LSTM 
structure. 
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