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1. Introduction 

 
Actual data from nuclear power plants (NPPs) is 

limited to the collection. Accordingly, in most studies 
[1, 2], data are collected through simulators. The 
simulator data are bound to be different from the real 
data, and the amount of data is limited. 

When a model performs well on the training data but 
poorly on the test data, it is called overfitting [3]. 
Insufficient data causes overfitting. A sufficient amount 
of data is essential for successful model training. 

A proposed method to solve this problem is data 
augmentation. Data augmentation means artificially 
generated data while preserving existing data [4]. Data 
augmentation not only expands the data set but also 
increases the diversity of the data set. Data 
augmentation helps to make better the overall 
performance of the model [5]. Data augmentation on 
limited data can make better the scale and quality of the 
training data set and build better deep learning models. 
It also enhances the performance of the model on 
untrained data to prevent overfitting [6]. 

Therefore, this study proposes a data augmentation 
method for applying NPP data and performs 
classification tasks using LSTM. For the diagnosis of 
12 scenarios, five data augmentation methods are 
adjusted to the time-series data set and evaluated. 

The goal of this paper is to help select which 
technique is most effective when augmenting NPP data 
consisting of time-series data. 

 
2. Methods 

 
2.1 Data Augmentation 
 

When training a deep learning model, it is essential to 
have an adequate amount of training data set. However, 
in reality, it is not easy in terms of time and cost. Using 
data augmentation techniques, a model can be 
successfully trained with a small amount of data. 

Data augmentation is a technique for making new 
data based on the original data set. Although image data 
augmentation methods are already known, cases of 
time-series augmentation are relatively few. Image data 
augmentation methods include 1) geometric 
transformation, 2) flipping, 3) color space, 4) cropping, 
4) rotation, 5) translation, 6) noise injection, and 7) 
color space transformations [6]. Most time-series data 
augmentation methods are inspired by image data 
augmentation methods. Similar to image augmentation 
methods, time-series data augmentation is performed 

through random transformations such as adding random 
noise to the training data, slicing or scaling, and 
warping. However, since time-series data have 
properties different from images, not all image 
augmentation methods may be applied to time-series 
data. Fig. 1 is a visualization of each augmentation 
method. 

 

 
 

Fig. 1. Visualizing and explaining data augmentation [8]. 
 
2.1.1  Jittering 
 

Adding noise to data is the best-known data 
augmentation method. Jittering is a method of adding a 
small amount of noise or outliers into the original data. 
The standard deviation of the noise following a 
Gaussian distribution serves as a hyperparameter. ε  is 
the Gaussian noise added to each time step t  and 

2~ 0,θ σ 
 
 

Ν . The standard deviation of the noise is a 

hyperparameter. This data augmentation method 



 

provides robust characteristics in spite of noise addition 
and enhances performance [7]. Jittering is calculated by 
Eq. (1). 

 

1 1, , , , ,t t T Tx x x xε ε ε′ = + ⋅⋅⋅ + ⋅⋅⋅ +  (1) 

 
2.1.2 Rotation 
 

Rotation in multivariate time-series data means an 
arbitrary rotation matrix according to an angle [8]. The 
degree of rotation acts as a hyperparameter. R is the 

rotation matrix for angle ( )2~ 0,θ σΝ . The stability of 

rotation is determined by the degree of rotation. It 
should be noted that the original data is not preserved if 
the degree of rotation is increased excessively [7]. The 
rotation equation is expressed as Eq. (2). 

 

1, , , , ,t Tx Rx Rx Rx′ = ⋅⋅⋅ ⋅⋅⋅  (2) 

 
2.1.3 Scaling 
 

Unlike scaling in image data, in time-series data, the 
size of each element is adjusted with a random scalar 
value, rather than expanding the data. It is created by 
multiplying all elements of data by a scaler, that is, an 
arbitrary scalar value α , which follows a Gaussian 

distribution ( )2
~ 1,Να σ and acts as a hyperparameter 

[7]. The scaling equation is expressed as Eq. (3). 
 

1, , , , ,t Tx x x xα α α′ = ⋅⋅⋅ ⋅⋅⋅  (3) 

 
2.1.4 Magnitude Warping 
 

The size of each data is changed through a 
convolution operation between the data window and a 
smooth curve that changes around 1. The size of each 
time-series data is multiplied by the curve generated by 
the number of knots set to an arbitrary size. 

1, , , ,t Tβ β β⋅⋅⋅ ⋅⋅⋅  is a sequence produced by interpolating a 

cubic spline ( )S u . Each knot u  is taken from a 

distribution ( )21,Ν σ  [7]. The number of knots acts as 

a hyperparameter [9]. The equation of magnitude 
warping is expressed as Eq. (4). 

 

1 1, , , , ,t t T Tx x x xβ β β′ = ⋅⋅⋅ ⋅⋅⋅  (4) 

 
2.1.5 Window Warping 
 

The window warping is implemented by warping the 
original data of each activity by speeding it up or down 
[10]. 

 

Fig. 2 is a visual representation of the data applied 
with various augmentation methods compared with the 
original data. 

 

 

 

 
Fig. 2. Results of data augmentation methods  
 
2.2 Long Short-Term Memory (LSTM) 
 

LSTM is a recurrent neural network model suggested 
to solve the long-term dependency problem of RNNs. 
LSTM is a method in which forget, input, and output 
gates are added to the memory cell of the hidden layer. 
This deletes unnecessary memories and decides what to 
remember. At each point in time, the information is 
deleted or retained, selectively passing data [11]. 

The forget gate determines the information to be 
deleted from the cell state through the sigmoid layer. 
The forget gate is calculated as Eq. (5). 

 

[ ]( )1,t f t t ff W h x bσ −= ⋅ +  (5) 

 
The input gate determines the information to be 

stored in the cell state among the new input information. 
The input gate is calculated as Eq. (6). 

 

[ ]( )1,t i t t ii W h x bσ −= ⋅ +  (6) 

 
The current cell state updates the information to be 

forgotten and the information to be stored. The previous 
cell state is passed to the next cell state. The cell state is 
calculated as Eq. (7). 

 

1 't t t t tC f C i C−= ∗ + ∗  (7) 

 
Finally, the output information is determined and sent 

to the output gate. The output gate is calculated as Eq. 
(8). 

 



 

[ ]( )1,t o t t oo W h x bσ −= +  (8) 

 
3. Data collection 

 
The compact nuclear simulator (CNS) is a simulator 

designed based on the Westinghouse pressurized light 
water reactor NPP. 38,041 training data were collected 
through the CNS. Five different parameters were 
applied to each augmentation method. The amount of 
the augmented data increased 5 times compared to the 
original data. A total of 228,246 training data were 
generated by synthesizing the original data and the 
augmented data. 

The model was trained by generating a new training 
set by synthesizing the original data with the generated 
data using the data augmentation methods.  

All trainings were conducted in the same 
environment using the model of the same structure. We 
designed the LSTM model to run for 500 epochs using 
Adam optimization. By applying the early stopping, 
training can be stopped when the model performance is 
most optimal. 

 
4. Result 

 
By performing training and testing through the 

LSTM model, it is possible to look into the result of the 
data augmentation method on the classification model 
accuracy. 

Balanced accuracy was used as an indicator to 
evaluate performance. The balanced accuracy is used to 
prevent exaggerated performance estimation when 
evaluating the performance of a classification model 
including unbalanced data. The balanced accuracy is 
calculated as Eq. (9). 
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 (9) 

 
Sensitivity (i.e., True Positive(TP) rate) is the 

probability that a positive case is correctly forecast as 
positive, and Specificity (i.e., True Negative(TN) rate) 
is the probability that a negative case is correctly 
forecast as negative [12].  

As a result of the experiment, it can be confirmed 
that the validation data set and the test data set show 
higher performance than the model trained with the 
original data set. It shows an accuracy improvement of 
at least 2% or more. Table I shows the accuracy of the 
model trained with the data to which each augmentation 
technique is applied. 

 

 

Table I: Classification model performance results using 
various data augmentation methods 

 Accuracy(%) 
Balanced 

Accuracy(%) 
Original 92.61 93.86 
Jittering 98.24 95.56 
Rotation 97.81 96.98 
Scaling 99.27 97.16 

Magnitude 
Warping 99.36 98.85 

Window 
Warping 

95.58 94.58 

 
5. Conclusions 

 
This study proposes an effective data augmentation 

technique appropriate for time-series NPP data using 
five data augmentation methods: jittering, rotation, 
scaling, magnitude warping, and window warping. 
Training and testing were conducted using LSTM, and 
the performance improvement of the classification 
model was tested by calculating the balanced accuracy. 
As a result, it was shown that data augmentation helps 
to enhance the generalization ability of the model and 
the overall performance of the model. In addition to the 
data augmentation method proposed in this study, there 
are also data generation models such as MODALS [13], 
Deep Autoregressive Networks (DARN), VAE [14], 
and GAN [15]. In future studies, the comparative 
evaluation of the performance of the data generation 
model and the data augmentation technique is also 
expected to be significant. 
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