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1. Introduction through random transformations such as adding rando
noise to the training data, slicing or scaling, and

Actual data from nuclear power plants (NPPs) is Warping. However, since time-series data have
limited to the collection. Accordingly, in most dies ~ Properties different from images, not all image
[1, 2], data are collected through simulators. The augmentation methods may be applied to time-series
simulator data are bound to be different from teal r ~ data. Fig. 1 is a visualization of each augmentatio
data, and the amount of data is limited. method.

When a model performs well on the training data but
poorly on the test data, it is called overfitting].[

Insufficient data causes overfitting. A sufficiearhount
of data is essential for successful model training.

A proposed method to solve this problem is data
augmentation. Data augmentation means artificially

a) Original
generated data while preserving existing dataPéfa o
augmentation not only expands the data set but alsc
increases the diversity of the data set. Data \\\ :
augmentation helps to make better the overall v i
performance of the model [5]. Data augmentation on e V
limited data can make better the scale and qualitite — rTrTEE

training data set and build better deep learningets
It also enhances the performance of the model on
untrained data to prevent overfitting [6].

Therefore, this study proposes a data augmentatior
method for applying NPP data and performs
classification tasks using LSTM. For the diagnasis
12 scenarios, five data augmentation methods are
adjusted to the time-series data set and evaluated.

The goal of this paper is to help select which
technique is most effective when augmenting NPR dat
consisting of time-series data.

(d) Scaling (e) Magnitude Warping
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2 M ethods (f) Permutation (g) Window Slicing

2.1 Data Augmentation

When training a deep learning model, it is esskttia
have an adequate amount of training data set. Hemyvev ' 2
in reality, it is not easy in terms of time and tcddsing (B Tacie Vidrping 0 WEnE W
data augmentation techniques, a model can be
successfully trained with a small amount of data.

Data augmentation is a technique for making new
data based on the original data set. Although intzge
augmentation methods are already known, cases of
time-series augmentation are relatively few. Imdgta
augmentation methods include 1) geometric
transformation, 2) flipping, 3) color space, 4) mpong,

4) rotation, 5) translation, 6) noise injection,dan)
color space transformations [6]. Most time-seriasad
augmentation methods are inspired by image dat
augmentation methods. Similar to image augmentation 9~N(0,02). The standard deviation of the noise is a
methods, time-series data augmentation is performedhyperparameter.

Fig. 1. Visualizing and explaining data augmentafi®).
2.1.1 Jittering

Adding noise to data is the best-known data
augmentation method. Jittering is a method of agldin
small amount of noise or outliers into the origidata.
The standard deviation of the noise following a
Gaussian distribution serves as a hyperparamétes.

athe Gaussian noise added to each time $tegnd

This data augmentation method



provides robust characteristics in spite of noidditaon
and enhances performance [7]. Jittering is caledlaty
Eq. (1).

X =x+&, X +& 00X +&,

2.1.2 Rotation

(1)

Rotation in multivariate time-series data means an
arbitrary rotation matrix according to an angle. [Bhe
degree of rotation acts as a hyperparameter. Reis t

rotation matrix for angle9~N(0,02) . The stability of

rotation is determined by the degree of rotatian. |
should be noted that the original data is not pueskif
the degree of rotation is increased excessivelyTig
rotation equation is expressed as Eq. (2).

X =R, IR ,[MRx;

2.1.3 Scaling

(2)

Unlike scaling in image data, in time-series d#ta,
size of each element is adjusted with a randomascal
value, rather than expanding the data. It is cceate
multiplying all elements of data by a scaler, tisatan
arbitrary scalar valugxr , which follows a Gaussian

distribution a~N(102) and acts as a hyperparameter

[7]. The scaling equation is expressed as Eq. (3).

X =ax, Mo, Mox:

2.1.4 Magnitude Warping

3)

The size of each data is changed through a

convolution operation between the data window and a

smooth curve that changes around 1. The size df eac
time-series data is multiplied by the curve gerestdty
the number of knots set to an arbitrary size.

A,003 05 is a sequence produced by interpolating a
cubic spline S(u) . Each knotU is taken from a
distribution N(l,az) [7]. The number of knots acts as

a hyperparameter [9]. The equation of magnitude
warping is expressed as Eq. (4).

X =%, B, MB X ,

2.1.5 Window War ping

(4)

The window warping is implemented by warping the
original data of each activity by speeding it updown
[10].

Fig. 2 is a visual representation of the data aplpli
with various augmentation methods compared with the
original data.
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Fig. 2. Results of data augmentation methods
2.2 Long Short-Term Memory (LSTM)

LSTM is a recurrent neural network model suggested
to solve the long-term dependency problem of RNNSs.
LSTM is a method in which forget, input, and output
gates are added to the memory cell of the hiddgerla
This deletes unnecessary memories and decidestwhat
remember. At each point in time, the information is
deleted or retained, selectively passing data [11].

The forget gate determines the information to be
deleted from the cell state through the sigmoidcetay
The forget gate is calculated as Eg. (5).

f,=a(W ifh.,,x] +b )

The input gate determines the information to be
stored in the cell state among the new input in&drom.
The input gate is calculated as Eq. (6).

i, =o(Wifh.,.x] +h)

The current cell state updates the information o b
forgotten and the information to be stored. Theviones
cell state is passed to the next cell state. Thestze is
calculated as Eq. (7).

G = fi G, +i [T

Finally, the output information is determined ardts
to the output gate. The output gate is calculase&@

(8).
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— Table I: Classification model performance resulisgis
Q= O(V\é[h-l’ )Q] +b)) (8) various data augmentation methods

3. Data collection Accuracy(%) Ac?cﬂ?;ci/i&)
iai 3

The compact nuclear simulator (CNS) is a simulator %tlglr?r?cl gggi g:gg
designed based on the Westinghouse pressurized ligh Rotatior 97.81 95.98
water reactor NPP. 38,041 training data were ctec Scali 99'27 97.16
through the CNS. Five different parameters were caling : :
applied to each augmentation method. The amount of Magnlt.ude 99.36 98.85
the augmented data increased 5 times compareceto th Wgrpmg
original data. A total of 228,246 training data ever Window 95.58 94.58
generated by synthesizing the original data and the L_Yarping
augmented data. )

The model was trained by generating a new training 5. Conclusions
set by synthesizing the original data with the gatesl ) ) )
data using the data augmentation methods. This study proposes an effective data augmentation

All trainings were conducted in the same technigue appropriate for time-series NPP datagusin
environment using the model of the same struciive. five data augmentation methods: jittering, rotation
designed the LSTM model to run for 500 epochs using Sc@ling, magnitude warping, and window warping.
Adam optimization. By applying the early stopping, Training and testing were conducted using LSTM, and

training can be stopped when the model performince the performance improvemt_ent of the classification
most optimal. model was tested by calculating the balanced acgura

As a result, it was shown that data augmentatidpshe
4. Result to enhance the generalization ability of the maated
the overall performance of the model. In additioritte
By performing training and testing through the data augmentation method proposed in this studyeth
LSTM model, it is possible to look into the resoltthe ~ @re @lso data generation models such as MODALS [13]
data augmentation method on the classification node Deep Autoregressive Networks (DARN), VAE [14],
accuracy. and GAN [15]. In future studies, the comparative
Balanced accuracy was used as an indicator toevaluation of the performance of the data generatio
evaluate performance. The balanced accuracy istosed M0del and the data augmentation technique is also
prevent exaggerated performance estimation when€XPected to be significant.
evaluating the performance of a classification nhode
including unbalanced data. The balanced accuracy is Acknowledgment

calculated as Eqg. (9).
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