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❑ Tungsten (W)

▪ W is used as a plasma-facing material for nuclear fusion reactor 

due to its favorable properties, such as high melting point. 

▪ The extreme environment of fusion reactors, characterized by 

intense energetic particle fluxes, causes adverse effects, such as 

increased tritium retention and degradation of mechanical 

properties.
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❑ Primary damage and radiation damage structure

▪ The initial stage of the radiation damages starts with the generation of primary knock-on atoms (PKAs)

which cause atomic displacement.

▪ After collision cascades, radiation damage structures are formed, which consists of defects such as vacancy 

and self-interstitial atom (SIA).
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❑ Molecular dynamics (MD)

▪ MD simulations is a suitable computational method to 

simulate atomic displacement by collisions.

▪ However, it is not easy to apply MD to simulate a high-

dose environment due to its high computational cost.
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❑ Convolutional neural network (CNN)

▪ CNN is a kind of deep learning method, which has shown high performance in image classification tasks.

▪ If deep learning can be used to classify radiation damage structures, we can obtain radiation damage structures 

at low cost without simulations of collision processes
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and replace it with CNN
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I. Introduction 2. Objective

<Objective>
Developing the classifier which is able to recognize and distinguish the radiation damage structures 

caused by PKAs in bcc-W 
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❑ Obtaining radiation damage structures

▪ MD recoil simulation with LAMMPS code was conducted to 

obtain radiation damage structures.

▪ Obtaining radiation damage structures with various conditions.

- 135 recoil conditions (1~32 keV energies; 15 directions)

- 100 samples for each conditions

▪ These structures were used for training and test data in our 

classifier.

MD simulation

1. MD simulationⅡ. Method

Vacancy SIA
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❑ Reducing dimension of radiation damage structures.

▪ To use our MD recoil simulation data as training and test data for CNN deep learning, we converted 

3-dimensional into 2-dimensional data.

(1) Radiation damage structures were obtained from MD recoil simulation

(2) Vacancies and SIAs position data were extract by Wigner-Seitz analysis method

(3) Supercell size was adjusted into 125×125×125.

(4) 3-dimentional defect structure was projected onto the 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 planes.

(5) Six data were merged so that (125, 125, 6) array data is obtained.

Data pre-processing

2. Data preprocessingⅡ. Method
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❑ Simple random and quasi random structures.

▪ To build high performance classifier, we should prepare not only correct radiation damage structure but also 

non-realistic defect structures for deep learning. We prepare two types: 

(1) simple random, totally random.

(2) quasi random which satisfies the defect number and position statistics derived from MD results.

Random defect structures

2. Data preprocessingⅡ. Method
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❑ CNN deep learning

▪ We defined YES data and NO data

- YES data are defect structures that can be formed by radiation damage: MD 

simulation data (Total 8200)

- NO data are defect structures that rarely formed by radiation damage: Simple 

random structure, quasi random structure (Total 5800)

▪ Training with Keras library.

Deep learning model

3. Deep learning modelⅡ. Method
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Input

Defect info. (125, 125, 6)

Output

Classification (Yes / No)

Convolution

ReLU

Batch Norm

Max pooling

Convolution

ReLU

Max pooling

Flatten

SoftMax



❑ Performance results

Classification performance test

1. Performance testⅢ. Results

Training dataset (recoil energy [KeV])

1, 2, 4, 8, 16, 32

Training data amount

YES data NO data Total

7200 4800 12000

Test data amount

YES data NO data Total

1000 990 1990

Classification accuracy [%]

YES data NO data Total

95.6 95.1 95.3
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Analysis of classification results

2. Classification analysisⅢ. Results
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# of data
Real data

YES data NO data

Prediction

by classifier

YES 956 48

NO 44 942

❑ Classification table

▪ To analyze how the classifier distinguish the defect structures and to confirm what make an error, 

we looked at classification case 1 ~ 4 results one by one.

(Case 1)

(Case 2)(Case 3)

(Case 4)



Analysis of classification results

2. Classification analysisⅢ. Results

❑ Case 1.YES data, correctly classified as “YES”

▪ Most damage structures obtained by MD simulations were correctly distinguished as YES data

▪ Especially the PKA energy has over 8keV, defects are mostly formed cluster.

▪ Below figures show examples of correctly classified YES data.
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Real: YES data & Classification results: YES



Analysis of classification results

2. Classification analysisⅢ. Results

❑ Case 2.NO data, correctly classified as “NO”

▪ Below figures show correctly classified NO data

- Obviously not radiation damage structure (left)

- NO data accidentally became similar to the structure generated by MD (right), but our classifier correctly classified.
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Real: NO data & Classification results: NO



Analysis of classification results

2. Classification analysisⅢ. Results

❑ Case 3.YES data, wrongly classified as “NO”

▪ Below figures show typical error cases:

- The radiation damage is composed of very few defects (left)

- Defects are widely separated and not clustered (right)
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Real: YES data & Classification results: NO



Analysis of classification results

2. Classification analysisⅢ. Results

❑ Case 4.NO data, wrongly classified as “YES”

▪ Below figures show typical error cases:

- The random structure is composed of very few defects and accidentally closely located.
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Real: NO data & Classification results: YES



Analysis of classification results

2. Classification analysisⅢ. Results

❑ Three types of errors

(1) (high energy) Random structures that are coincidentally similar to MD recoil simulation results.

- Intrinsic error of random structure generation and rarely affects final performance.

(2) (low energy) Damage structures composed of 4 or fewer defects each.

(3) (low energy) Defect number is small and the defects are not so clustered.
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Analysis of classification results

2. Classification analysisⅢ. Results

❑ Errors at high energy (Over 7keV PKA)

✓ No matter defects are clustered or not, our classifier can distinguish YES/NO data with 99% accuracy. 
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❑ Errors at low energy (Under 7keV PKA)

✓ When defects form clusters, our classifier can recognize YES/NO data very well.

✓ But for error type (2) and (3), it seems hard for the present CNN to distinguish YES/NO

Total test cases

True 
radiation 
damage 
structure

Random 
defect 

structure

Small number, non-clustered 
defect structures that the 

classifier cannot distinguish



Classification performance improvement

3. Performance improvementⅢ. Results

❑ Training data ratio test

▪ The classification results of indistinguishable defect structures are often affected by YES/NO data ratio in 

the training set
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Total test cases

True 
radiation 
damage 
structure

Random 
defect 

structure

(a)

(b)

(c)

◆ When YES data has been trained more than NO data.

- (a): YES

- (b): more likely to predict YES

- (c): NO

◆ When NO data has been trained more than YES data.

- (a): YES

- (b): more likely to predict NO

- (c): NO



Classification performance improvement

3. Performance improvementⅢ. Results

❑ Training data ratio changing test

▪ The ratio of YES and NO data size in training dataset was changed with the same CNN architecture and 

total data amount.

▪ There is a trade-off between YES&NO data classification error 

rate at low energy.

▪ We can select the data proportion based on the purpose of 

classifier.
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Application of this method

3. Performance improvementⅢ. Results

❑ Radiation damage structure generator

▪ Since our classifier can distinguish radiation damage structure, we can produce radiation damage structure 

with a random structure generator.

▪ We can obtain radiation damage structure without high-cost MD calculation, the only needs are PKA 

energy and directions.
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Random generator
Random defect structures are 

generated

Classifier

Classify whether it is radiation 

damage structure or not

Valid<Input>

PKA 𝐸, Ԧ𝑑

<Output> 

radiation defect 

structure

repeat until valid



Conclusion

Ⅳ. Conclusion

❑ Summary

▪ We obtained radiation damage structure in bcc-W by MD recoil simulation. And it was trained by CNN 

deep learning method.

▪ As a result, we developed the classifier that can distinguish whether an arbitrary defect structure is a 

radiation damage structure. And its classification performance showed 95.3% accuracy.

▪ There are indistinguishable defect structures at very low energy. The errors caused by these structures can 

be managed by training data ratio based on a purpose of the classifier.

▪ This classifier can be used in radiation damage research. Especially, we are building ‘radiation damage 

structure generator’ to reduce a computational cost of MD simulations.
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