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I. Introduction 1. Backgrounds
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+) Radiation damage in tungsten

R
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O Tungsten (W)

= W is used as a plasma-facing material for nuclear fusion reactor
due to its favorable properties, such as high melting point.

» The extreme environment of fusion reactors, characterized by
Intense energetic particle fluxes, causes adverse effects, such as
Increased tritium retention and degradation of mechanical
properties.

/NNNNN\L_ ~ T. Hirai, et al., Journal of Nuclear Materials and Energy, 2016, \ol
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w) Radiation damage structure

O Primary damage and radiation damage structure

= The initial stage of the radiation damages starts with the generation of primary knock-on atoms (PKAS)
which cause atomic displacement.

= After collision cascades, radiation damage structures are formed, which consists of defects such as vacancy
and self-interstitial atom (SI1A).
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/NNNN\L - Kai Nordlund, et al., Journal of Nuclear Materials, 2018, Vol. 512, 450-479
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w:) Radiation damage structure

1 Molecular dynamics (MD)
= MD simulations is a suitable computational method to
simulate atomic displacement by collisions.

= However, it is not easy to apply MD to simulate a high-
dose environment due to its high computational cost.

/\//V\/\/\L * http://www.youtube.com/watch?v=0btHd_8JFV4 0.
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«) Radiation damage in tungsten

 Convolutional neural network (CNN)
= CNN is akind of deep learning method, which has shown high performance in image classification tasks.

= |f deep learning can be used to classify radiation damage structures, we can obtain radiation damage structures
t low cost without simulations of collision processes
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w:) Research goals

<Objective>

Developing the classifier which is able to recognize and distinguish the radiation damage structures
caused by PKAs in bcc-W
O Contents
.  Method

(1) MD simulation

(2) Data pre-processing

(3) CNN deep leaning
I1. Results and discussions

(1) Classification performance

(2) Classification results analysis
(3) Application

ANNNNAL
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I1. Method 1. MD simulation

#F) MD simulation

1 Obtaining radiation damage structures

= MD recoil simulation with LAMMPS code was conducted to
obtain radiation damage structures.

= Obtaining radiation damage structures with various conditions.

- 135 recoil conditions (1~32 keV energies; 15 directions)
- 100 samples for each conditions

» These structures were used for training and test data in our
classifier.

A
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w) Data pre-processing

 Reducing dimension of radiation damage structures.

= To use our MD recoil simulation data as training and test data for CNN deep learning, we converted
3-dimensional into 2-dimensional data.
(1) Radiation damage structures were obtained from MD recoil simulation
(2) Vacancies and SIAs position data were extract by Wigner-Seitz analysis method
(3) Supercell size was adjusted into 125x125x125.
(4) 3-dimentional defect structure was projected onto the xy, yz, zx planes.
(5) Six data were merged so that (125, 125, 6) array data is obtained.

ANNNNAL
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w:) Random defect structures

O Simple random and quasi random structures.

= To build high performance classifier, we should prepare not only correct radiation damage structure but also
non-realistic defect structures for deep learning. We prepare two types:

(1) simple random, totally random.
(2) quasi random which satisfies the defect number and position statistics derived from MD results.

/<Simple random structures>\ /<Quasi random structure> \

ANNNNAL
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I1. Method 3. Deep learning model

w¢) Deep learning model

(d CNN deep learning
= We defined YES data and NO data

- YES data are defect structures that can be formed by radiation damage: MD
simulation data (Total 8200)

- NO data are defect structures that rarely formed by radiation damage: Simple
random structure, quasi random structure (Total 5800)

» Training with Keras library.

ANNNNAL
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II1. Results 1. Performance test

1 Performance results
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Error rate (%)

Training dataset (recoil energy [KeV])
1,2,4,8,16, 32
Training data amount
YES data NO data Total
7200 4800 12000
Test data amount
YES data NO data Total
1000 990 1990
Classification accuracy [%]
YES data NO data Total
95.6 95.1 95.3
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8@ Analysis of classification results

1 Classification table

= To analyze how the classifier distinguish the defect structures and to confirm what make an error,
we looked at classification case 1 ~ 4 results one by one.

Real data
# of data
YES data NO data

(Case 1) (Case 4)

YES 956 48
Prediction

by classifier (Case 3) (Case 2)

NO 44 042

ANNNNAL
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w) Analysis of classification results

O Case 1.YES data, correctly classified as “YES”

= Most damage structures obtained by MD simulations were correctly distinguished as YES data
= Especially the PKA energy has over 8keV, defects are mostly formed cluster.

= Below figures show examples of correctly classified YES data.

/ Real: YES data & Classification results: YES \

APMAL
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w) Analysis of classification results

1 Case 2.NO data, correctly classified as “NO”

= Below figures show correctly classified NO data
- Obviously not radiation damage structure (left)
- NO data accidentally became similar to the structure generated by MD (right), but our classifier correctly classified.

/ Real: NO data & Classification results: NO \

APMAL
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w) Analysis of classification results

O Case 3.YES data, wrongly classified as “NO”

= Below figures show typical error cases:
- The radiation damage is composed of very few defects (left)
- Defects are widely separated and not clustered (right)

2022
st 2l xt2i3t 3]
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/ Real: YES data & Classification results: NO

APMAL
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w) Analysis of classification results

O Case 4.NO data, wrongly classified as “YES”

= Below figures show typical error cases:
- The random structure is composed of very few defects and accidentally closely located.
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/ Real: NO data & Classification results: YES

APMAL
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w) Analysis of classification results

O Three types of errors
(1) (high energy) Random structures that are coincidentally similar to MD recoil simulation results.

- Intrinsic error of random structure generation and rarely affects final performance.
(2) (low energy) Damage structures composed of 4 or fewer defects each.
(3) (low energy) Defect number is small and the defects are not so clustered.
Error Type (1) Error Type (2) Error Type (3)

ANNNNAL
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w) Analysis of classification results

O Errors at high energy (Over 7keV PKA)
v" No matter defects are clustered or not, our classifier can distinguish YES/NO data with 99% accuracy.

O Errors at low energy (Under 7keV PKA)

v" When defects form clusters, our classifier can recognize YES/NO data very well.
v But for error type (2) and (3), it seems hard for the present CNN to distinguish YES/NO

Small number, non-clustered
defect structures that the

Total test cases

classifier cannot distinguish
True
radiation Random
defect
SENMEDE structure
structure
ANNNAL \_ J
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w) Classification performance improvement

O Training data ratio test

= The classification results of indistinguishable defect structures are often affected by YES/NO data ratio in
the training set

Total test cases € When YES data has been trained more than NO data.
(a) (© 7\ - (@): YES
TR - (b): more likely to predict YES
radiation () Rc?gf%c():{n -(©):NO
damage structure
structure € When NO data has been trained more than YES data.

\ / - (a): YES

- (b): more likely to predict NO
- (€): NO

ANNNNAL
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wt) Classification performance improvement

[ Training data ratio changing test

= The ratio of YES and NO data size in training dataset was changed with the same CNN architecture and
total data amount.

YES data NO data
= There is a trade-off between YES&NO data classification error 50 - i 50 - |
m 115
rate at low energy. o 2:1
i i . v A—4:1
= \We can select the data proportion based on the purpose of /_\40 . * v 81
.. S
classifier. S %0 0] 7
= v
o AA 7
D 20 - 20 - A Y
E e @ ® o/ a
] L] ® = *
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w:) Application of this method

 Radiation damage structure generator

= Since our classifier can distinguish radiation damage structure, we can produce radiation damage structure
with a random structure generator.

= \We can obtain radiation damage structure without high-cost MD calculation, the only needs are PKA
energy and directions.

<Input> Random generator Classifier valid <Output>
£ d —> Random defect structuresare ——> Classify whether it is radiation ——>  radiation defect
PKAL, generated damage structure or not structure
() |

repeat until valid

AL »
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w) Conclusion

d Summary

We obtained radiation damage structure in bcc-W by MD recoil simulation. And it was trained by CNN
deep learning method.

As a result, we developed the classifier that can distinguish whether an arbitrary defect structure is a
radiation damage structure. And its classification performance showed 95.3% accuracy.

There are indistinguishable defect structures at very low energy. The errors caused by these structures can
be managed by training data ratio based on a purpose of the classifier.

This classifier can be used in radiation damage research. Especially, we are building ‘radiation damage
structure generator’ to reduce a computational cost of MD simulations.

ANNNNAL
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