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1. Introduction 

 
Due to favorable properties in high heat-load 

environments such as high melting point, low 

coefficient of thermal expansion, and high thermal 

conductivity, tungsten (W) has been considered as a 

plasma-facing material for fusion reactors [1][2]. 

Materials used in nuclear fission/fusion reactors are 

subjected to neutron irradiation, and the radiation 

damages can affect the safety and performance of the 

nuclear power systems [3]. Therefore, it is important to 

understand how radiation damages are formed and how 

they evolve in materials. 

In a material exposed to neutron irradiation, primary 

knock-on atoms (PKAs) are generated by receiving 

excess energy by collision with neutrons. If a PKA has 

a high kinetic energy, defects such as self-interstitial 

atoms (SIAs) and vacancies are generated due to energy 

transfer in a sequence of collisions [4]. To predict the 

radiation damage phenomena, molecular dynamics 

(MD) simulation, which is a computationally intensive 

method for simulating many-body collision [5], has 

been widely used. However, it is not easy to apply MD 

to simulations of high-energy and high-dose damages 

because of its high computational cost. 

 Recently, convolutional neural network (CNN), 

which is a kind of deep learning method, has shown 

high performance in image classification tasks [6]. Thus, 

in this research, to reduce the computational cost of 

radiation damage simulations significantly, we 

investigate whether radiation damage structures 

obtained by MD can be identified and imitated by CNN 

deep learning. If such a machine-learning classifier is 

successfully constructed, a radiation damage simulator 

for high-energy and high-dose damage, which is 

important in the development of fusion and fast reactors, 

can be developed in the future.  

In this research, bcc-W was used as a test system. 

Radiation damage structures were generated by MD 

recoil simulations and were used as training and test 

data in developing the classifier using CNN. The 

classification performance was evaluated and effects of 

training conditions were analyzed. 

 

 

2. Methods 

 

In this section, we present processes to build the 

radiation damage structure classifier. First, defect 

structure data after collision cascades in W were 

generated by MD recoil simulations. Second, data 

preprocessing was conducted to convert MD simulation 

data into an appropriate data format for deep learning. 

Third, a CNN deep learning model for radiation damage 

classification was built and optimized. Lastly, the 

classifier was tested with non-trained dataset to evaluate 

the classification performance. 

 

2.1 MD simulation 

 

Radiation damage structures used as training and test 

datasets for the classifier were generated by MD recoil 

simulations using LAMMPS code [7]. To simulate the 

bulk structure of bcc-W, 110×100×90 (1980000 atoms) 

supercells were basically used, while 144×72×72 

(1492992 atoms) supercells were used only for near 

<100> displacement simulations. The system was first 

equilibrated under the condition of 30 K and 1 bar with 

an NPT ensemble. Subsequently, we introduced excess 

kinetic energy to an atom that will become a recoil atom. 

The time evolution in a recoil simulation was simulated 

with an NVE ensemble using a variable timestep 

method. The recoil simulations were continued for 

around 6~15 ps until defect structures converged. The 

embedded-atom method (EAM) [8] potential 

parameterized by Derlet et al. [9] and modified by 

Bjorkas et al. [10] was used as the potential model for 

recoil simulations. Damage structures were obtained 

under total 90 settings (6 energies and 15 directions). 

To account for the stochastic nature of radiation damage, 

100 time samples were collected for each setting. 

 

2.2 Data preprocessing 

 

The results of MD recoil simulations were given as 

3-dimensional Cartesian coordinates of atoms. We 

converted atomic position data into defect structure data. 

In addition, we reduced the dimension of original defect 

structure data to 2 dimensions since CNN has showed 

good performance with 2-dimensional data. 

These data preprocessing tasks were completed in 

four steps. First, vacancies and SIAs position data were 

extracted from atomic position data using Wigner-Seitz 

defect analysis method [11]. Second, since two 

supercell sizes were used in MD, they were adjusted to 

125×125×125 supercell size. Third, the 3-dimetional 

data were projected onto the xy, yz, and xz planes. 

Therefore, one MD recoil simulation has a set of six 

data of 125×125 2-dimentional cells. Finally, six data 

were merged so that (125, 125, 6) array data is finally 

generated for training and test in CNN deep learning. 
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2.3 Deep learning model 

 

CNN deep learning was adopted to build radiation 

damage structure classifier. The CNN training 

architecture used in this study is presented in Figure 1. 

As described in the previous section, each input has a 

(125, 125, 6) array format. The output is a classification 

result, classifying an input into radiation damage 

structure (“Yes”) or not (“No”). 

The training and test datasets consist of YES data and 

NO data. YES data, which are defect structures that can 

be formed by radiation damage, were generated by MD 

recoil simulations and data preprocessing as described 

in Section 2.1 and 2.2. NO data, which are defect 

structures that cannot be formed by radiation, were 

prepared randomly. To be specific, vacancies and SIAs 

were randomly distributed in a 125×125×125 supercell, 

while limiting the number of defects to 4~80. In 

addition, to make NO data more similar to YES data, 

some NO data were prepared considering statistics of 

defect numbers and locations obtained by MD. In total, 

8200 YES data and 5800 NO data were generated. 

As shown in Figure 1, the CNN architecture has two 

convolutional layers with a Rectified Linear Unit 

(ReLU) activation function and max-pooling layers. 

Finally, the extracted features are flattened and 

classified with Softmax function. The learning 

architecture was optimized to maximize the prediction 

accuracy of the classifier. 

 

 
Fig. 1. Convolutional neural network (CNN) architecture used 

to build the radiation damage structure classifier. 

 

 

3. Results and Discussion 

 

3.1 Classification performance test 

 

In the process of training, we used 7200 YES data 

and 4800 NO data for 6 recoil energies (1, 2, 4, 8, 16, 

32 keV) and 15 recoil directions. Subsequently, the 

classification performance was evaluated with 1990 test 

data composed of 1000 YES data and 990 NO data. The 

information of recoil energies and directions used in the 

training and test is summarized in Table 1 together with 

obtained classification accuracy. 

The classification results showed 95.3% accuracy, 

with 95.6% accuracy for YES data and 95.1% for NO 

data. Figure 2 shows the error rate of classifying YES 

and NO data as a function of recoil energy. When the 

test recoil energy was lower, the error rate became 

higher. Although the total error rate was below 5%, NO 

data error rate reached 15~30% when the recoil energy 

was below 6 keV. 

 

Table I: Summary of training and test data information and 

classification performance. 

Training dataset (recoil energy [KeV]) 

1, 2, 4, 8, 16, 32 

Training data amount 

YES data No data Total 

7200 4800 12000 

Test data amount 

YES data No data Total 

1000 990 1990 

Classification accuracy [%] 

YES data No data Total 

95.6 95.1 95.3 

 

 

 
Fig. 2. Classification error rates of the radiation damage 

structure classifier as a function of recoil energy. 

 

 

3.2. Analysis of classification results 

 

To evaluate the performance of the classifier in detail, 

we analyzed the classification results. Figure 3 shows 

six typical cases as follows:  

✓ First, most damage structures obtained by MD 

simulations were correctly distinguished as YES 

data. Figure 3 (a) shows one of YES data that was 

correctly classified as Yes.  

✓ However, as in Figure 3 (b) and (c), some YES data 

were wrongly classified as No. These two 

structures show typical error cases: in (b), the 

radiation damage is composed of very few defects 

(less than 4); in (c), defects are widely separated 

and not clustered.  

✓ In the case of NO data, as in Figure 3 (d), when the 

defects were widely spread so that it is obviously 

not radiation damage structure, the classifier 

perfectly classified as No.  

✓ Even when NO data accidentally included clustered 

defects so that the damage structure became similar 
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to the structure that can be generated by MD 

simulations as in Figure 3 (e), our classifier 

correctly classified them as No in most cases. 

However, some of these structures were incorrectly 

classified as Yes, as in Figure 3 (f). 

 

 
Fig. 3. Typical defect structures that correctly or wrongly 

identified by the classifier. The figures were drawn with 

OVITO software [12]. These 6 cases correspond to (a) YES 

data correctly classified as Yes, (b)(c) YES data wrongly 

classified as No, (d)(e) NO data correctly classified as No, and 

(f) NO data wrongly classified as Yes. Blue and red points 

indicate the positions of vacancies and SIAs, respectively. 
 

In short, three types of structures often caused errors: 

(1) random structures that are coincidentally similar 

with MD recoil simulation results, (2) radiation damage 

structures composed of a small number of defects, and 

(3) radiation damage structures where defects are not so 

clustered. 

The error type (1) is an intrinsic error of random 

structure generation and mostly happened with high 

recoil energy. On the other hands, the error types (2) 

and (3) occurred with low recoil energy, and causes the 

high error rate. This is because YES data, produced by 

MD recoil simulations, are no more special compared to 

randomly distributed defect data at low recoil energy. 

Accordingly, it is reasonable to consider that the 

relatively low classification performance at low recoil 

energy does not indicate the low performance of the 

classifier but merely reflects the nature of defect 

structures. 

 

3.3 Classification performance improvement 

 

Since the error rate due to (1) is below 0.5%, we 

focused on reducing error rate due to (2) and (3). To 

reduce the error rate by (2) and (3), the ratio of YES 

and NO data size in training dataset was changed and 

the error rates were analyzed. The performance was 

compared between four classifiers constructed with 

different data ratios (1:1.5, 2:1, 4:1, and 8:1). The total 

training size was fixed. The results are shown in Figure 

4. Since the error types of (2) and (3) occurred mostly at 

low recoil energy, only error rates at low recoil energy 

are presented in Figure 4. 

From the training data ratio test, a trade-off between 

YES data classification accuracy and NO data 

classification accuracy is observed at low energy. Since 

a defect structure that can be formed either by MD 

recoil simulation or by random generation should be 

classified as Yes, it is necessary to decrease the YES 

data error rate by allowing some increase in the NO 

data error rate. Thus, in the final version of the classifier 

whose classification performance is shown in Figure 2, 

we applied 4:1 data ratio so that the YES data error rate 

is reduced below approximately 10%, and the increase 

of the NO data error is suppressed as much as possible. 

 

 
Fig. 4. Classification performance at low energy with different 

training data ratios. The tested ratios (YES data : NO data) are 

1:1.5 (black), 2:1 (red), 4:1 (black), and 8:1(green). The left 

figure shows the YES data error rates, and the right figure 

shows the NO data error rates. 

 

4. Conclusions 

 

In this research, we proposed a radiation damage 

structure classifier with various recoil energy and 

directions in bcc-W using MD recoil simulations and 

CNN deep learning. The classification performance of 

classifier achieved 95.3% accuracy. However, the NO 
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data error rate increased over 15% when the recoil 

energy was low, e.g., below 6~8 keV.  

By analyzing the classification results,  it was 

confirmed that most of errors were caused with low 

energy recoil when a small number of defects were 

formed and when the formed defects were not 

significantly clustered. To improve the classification 

performance of the classifier at low recoil energy, the 

training data ratio test was additionally conducted, and 

we concluded that including YES data and No data with 

4:1 ratio can suppress the YES data error rate below 

10% while the NO data error does not soar. 

Through this study, we confirmed that radiation 

damage structures can be learned by CNN deep learning.  

Using the constructed classifier, we plan to develop a 

radiation damage simulator for high-energy and high-

dose damage in future studies. 
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