

How to Win the Uncertainty of Ex-vessel Corium Coolability in Pre-flooded Cavity.

Part 1: COOLAP-3 Development Part 2: MELCOR-COOLAP Coupled Analysis

Juwook Lee, Joongoo Jeon, Seokwon Whang, Hyun Sun Park*

The **ARTS** Laboratory

Advances in Risk Tolerance and Safety Laboratory Seoul National University, Republic of Korea October. 20. 2022

Background and Objective

COOLAP-3 Modeling Concept

Application of COOLAP-3 to Uncertainty Analysis

Summary

Background and objective

- 1. Ex-vessel corium cooling
- 2. Objective for COOLAP-3 code

Ex-vessel Object

4 14

대학교

Ex-vessel corium cooling

Ex-vessel corium cooling strategies

Ex-vessel corium cooling

Ex-vessel corium behavior in pre-flooded cavity

(1) Jet fragmentation

② Jet breakup

Non-energetic Phenomena in Pre-flooded Cavity

Cake

Debris bed

④ Two-phase in debris bed

Index matching (Vishal, 2022)

Objective for COOLAP-3

Uncertainty of Severe Accident

Jet breakup

Complexity of Phenomena a. K-H instability b. R-T instability c. Vortex stripping d. Coarse breakup a. Nonhomogeneous structure b. Steam outflow c. Water inflow d. Quench front

Debris bed cooling

Various of physical models describing phenomena

- Testing various of physical models
- Overcoming uncertainty

COOLAP-3 Modeling Concept

- 1. Cooling of corium in pre-flooded cavity
- 2. Validation: FARO L28 and L31

Cooling of corium in pre-flooded cavity

Corium behavior in COOLAP-3

|Dryout in debris bed

- Debris bed heat transfer limit
 - 2-Phase Counter-Current Flow Limit
 - Heat transfer from debris bed is limited by **Dryout**. ($\dot{q}_d \leq \dot{q}_{dhf}$)

Lipinski-type vertical 1-D DHF equations

Mass

$$\bullet \boldsymbol{j}_{v} = \frac{q_{dhf}^{\prime\prime}}{\rho_{v}h_{fg}}$$
$$\bullet \boldsymbol{j}_{l} = -\frac{q_{dhf}^{\prime\prime}}{\rho_{v}h_{fg}}$$

Momentum

$$\mathbf{\Phi} \frac{dP_{v}}{dz} = -\boldsymbol{\rho}_{v}\boldsymbol{g} - \frac{\mu_{v}}{K_{r,v}K}\boldsymbol{j}_{v} - \frac{\boldsymbol{\rho}_{v}}{\eta_{r,v}\eta}|\boldsymbol{j}_{v}|\boldsymbol{j}_{v} - \frac{F_{i}}{\varepsilon\alpha}$$

$$\mathbf{\Phi} \frac{dP_{l}}{dz} = -\boldsymbol{\rho}_{l}\boldsymbol{g} - \frac{\mu_{l}}{K_{r,l}K}\boldsymbol{j}_{l} - \frac{\boldsymbol{\rho}_{l}}{\eta_{r,l}\eta}|\boldsymbol{j}_{l}|\boldsymbol{j}_{l} + \frac{F_{i}}{\varepsilon(1-\alpha)}$$

Closure relation (Ergun, 1952)

• Permeability:
$$K = \frac{\varepsilon^3 D_p^2}{150(1-\varepsilon)^2}$$

• Passability: $\eta = \frac{\varepsilon^3 D_p}{1.75(1-\varepsilon)}$

$$\dot{q}_{dhf} = \int_{A_{htm}} q_{dhf}^{\prime\prime} \, dA$$

Model effect: 1000MWe-type NPP

Validation: FARO L28, L31

Characteristics of corium debris bed generated in large-scale fuel-coolant interaction experiments (D. Magallon, 2006)

Test condition		
Input	L28	L31
Melt material	<i>UO₂/ZrO₂</i> (80/20wt%)	
Melt mass (kg)	175	92
Melt initial temperature (K)	3052	2990
Melt release height (m)	2.33	2.22
System pressure (MPa)	0.51	0.22
Water temperature (K)	423	291
Debris catcher area (m^2)	0.3959	0.1302

L28 condition

- Large debris catcher (0.40m²)
- High system pressure (0.51MPa)
- Low subcooling ($\Delta T_{sub} = 2.6K$)

L31 condition

- Small debris catcher (0.13m²)
- Low system pressure (0.22 MPa)
- High subcooling ($\Delta T_{sub} = 105.4K$)

Korean Nuclear Society 2022 Autumn Meeting

Application of COOLAP-3 to Uncertainty Analysis

- 1. Methodology: MELCOR-COOLAP framework
- 2. Result: Containment pressure, cavity ablation depth

14

Methodology: MELCOR-COOLAP framework

MELCOR-COOLAP coupling framework

Result: Containment pressure, cavity ablation depth

MELCOR-COOLAP vs MELCOR single

- Gap (MEL → MEL-CL)
 - All Cake \rightarrow Cake + debris bed
 - Totally spreading \rightarrow Spreading according to model
- Result
 - Conservative pressure increase
 - Ablation reflecting phenomena in pre-flooded cavity

Cavity Ablation Depth (MEL-CL, MEL)

Summary

- Objective: Evaluation of ex-vessel coolability
- Code update: COOLAP-2 → COOLAP-3
 - Particle size distribution
 - Debris bed shape
- Validation with FARO L28 and L31

Application to Uncertainty Analysis

- MELCOR-COOLAP framework
 - Containment pressurization
 - Molten Core-Concrete Interaction
- Possible to reflect phenomena in preflooded cavity

Future Work

- Possibility of underestimation of DHF
- Multi-dimensional water ingression

Thank you for listening!

