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1. Introduction 

 
The 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 

5.8) and the Pohang earthquake (Nov. 15, 2017, ML 

5.4) have occurred in the Korean Peninsula, and as a 

result, the stability of nuclear power plants has been 

emphasized. To confirm the stability against earth-

quakes, ground motion processing is essential for many 

research topics such as structural design, input seismic 

evaluation, and ground motion attenuation. The time 

windows data for ground motion processing should 

have a single event to derive accurate results and it 

should be reasonably and scientifically processed. 

We need to know P and S phase arrival times to find 

the event time window. However, the catalog of 

earthquakes in the Korean peninsula has P and S phase 

arrival times only for some stations used in the origin 

calculation. Therefore, we use deep learning-based 

phase (P & S phase) picker models to find event time 

windows from continuous data for all stations. Since 

2018, various deep learning models have been studied 

around the world, showing high accuracy and efficiency 

compared to human analysis. General Phase Detector 

(GPD) [1], based on Convolutional Neural Networks 

(CNN), found many events missed by human analysts 

in the 2016 Bombay Beach, California Swarm. ARRU 

Phase Picker [2] was able to effectively find P and S 

phases at low Signal to Noise (SNR) ratio. Earthquake 

Transformer (EQTransformer) [3], which uses an 

attention mechanism, showed higher accuracy 

compared to manual picking for a Japanese earthquake. 

Many methods of obtaining ground motion data have 

been proposed around the world. The NGA-east 

database generated ground motion data by processing 

earthquake events in the Central and Eastern North 

America (CENA) region. The processing flow of the 

NGA-east database [4] is 1) remove mean and 

instrument response, apply cosine taper 2) determine 

corner frequency by FAS  3) filter to reduce the noise 4) 

baseline correction. The ground motion processing 

method of RESOURCE [5], the reference database for 

seismic ground-motion, is 1) visual screening 2) remove 

mean and taper 3) determine corner frequency 4) apply 

4-pole acausal Butterworth filter 5) fit a 6th order 

polynomial to the displacement trace 6) subtract the 

second derivative of the polynomial from the 

acceleration method. The method used by ITACA[6] in 

Italy is similar to the one described above. 

In this study, we have developed a method for ground 

motion processing from continuous waveforms and a 

database scheme. We used deep learning models to 

determine the time window and ensemble the results to 

improve the accuracy under various conditions. The 

ground motion processing was developed using the 

NGA-east database as a reference. Considering the data 

structure of Seisbench [7], an open-source platform that 

provides standard datasets for machine learning, we 

designed the ground motion database and naming 

scheme. 

 

2. Processing and Database schema 

 

2.1 Processing 

 

2.1.1. Phase picking based on multiple deep learning 

models 

 

We used a deep learning-based picking and detection 

model to define the time window of the event in the 

continuous data and to know the time window of the 

noise, P, and S phases for ground motion processing. 

Münchmeye [8] evaluated EQTransformer, GPD, and 

PhaseNet [9] as the best performing models both in- 

and cross-domain. Therefore, we selected these models 

and ensemble the results. 

The models and Ensemble (Voting) were evaluated 

using the Korean dataset by 3 tasks. 1) event detection 

2) phase identification 3) P onset time determination. 

Fig. 1 shows the distribution of the Korean dataset. It 

consists of 1,394 earthquakes from 2010 to 2022. All 

earthquakes' magnitude is over 2.0. 

 

 
 
Fig. 1. The earthquake distribution of the Korean dataset 
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Fig. 2 shows the results of the performance 

comparisons. For event detection, EQTransformer 

(AUC 0.87) and Voting (AUC 0.87) showed the best 

performance. For Phase Identification, EQTransformer 

(AUC 0.76) and Voting (AUC 0.76) performed best. 

For P onset time determination, Ensemble (Voting) 

(MAE, Mean Absolute Error 1.74) and EQTransformer 

(1.83) performed well [10]. 

 

 
 
Fig. 2. Performance comparisons of each task. The left 

shows the Receiver operating characteristic for detection 

(Top) and identification (Bottom). The right shows histogram 

of P residuals. 
 

2.1.2. Ground Motion Processing  

 

For ground motion processing, we used Obpsy [11] 

and TSPP [12]. Obspy is a Python-based open-source 

platform for seismic data processing, and TSPP is a set 

of Fortran programs for processing and manipulating 

time history.  

 

 
 

Fig. 3. Overall flow for processing ground motion data from 

Conti data 

 

The continuous data is segmented into the time 

window data by Phase picking based on multiple deep 

learning models. It has a mini-seed file format, so it 

must convert to the SMC format used in TSPP. In the 

case of velocity records, it must convert to acceleration 

records. Finally, after mean, slope removal, and 

instrument calibration, the preprocessing is complete.  

Apply tapering and zero-padding to preprocessed data.  

Compare the Fourier amplitude spectra (FAS) of noise 

and event parts or observe the drift of the displacement 

curve to determine the cutoff frequency. Adapt 4-pole 

acausal Butterworth and finally compute Peak Ground 

Acceleration (PGA), Cumulative absolute velocity 

(CAV) and Pseudo Spectral Acceleration (PSA). Fig. 3 

shows the overall process. 

 

2.2 Database Scheme 

 

The naming scheme is organized in the form of 

"CATEGORY_PARAMETER_UNIT" as suggested by 

Seisbench. The categories are trace, source, station, atch, 

feat and path. The parameter describes the provided 

information, such as latitude, longitude or depth. The 

unit defines the unit in which the information is 

provided. It represents the parameter's physical value, 

like m, cm, counts, and samples. 

 

 
 

Fig. 4. Database scheme for ground motion database 

 

Fig. 4 shows the database scheme for ground motion 

data. Station contains all information about the station 

that recorded the trace, such as the station's latitude, 

longitude, altitude, and calibration. Trace describes all 

information about the time history, such as the start 

time, end time, and P or S phase arrival time. Source 

contains earthquake related information. Path contains 

information about the relationship between source and 

station, such as azimuth, back azimuth, epicenter 

distance, and hypocenter distance. Feat contains a 1-

dimensional array of information about features, such as 

PGA, PGV, and CAV that have only one value for each 

time history. Atch contains a 2-dimensional array 

information such as PSA, and FAS. Since it is difficult 

to include two-dimensional array information in a 

ground motion database, we use the flat file instead, and 

only its links are included in the database. 
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3. Conclusions 

 

This study describes a methodology for ground motion 

database and processing. The results obtained are as 

follows: 

 

1) We validated Phase Picking based on multiple deep 

learning models using Korean dataset and presented a 

method for generating ground motion data from 

continuous waveforms. This will be used to 

automatically generate ground motion data from real-

time sensor. 

2) Using Phase picking based on multiple deep learning 

models, we can process large amounts of historical data 

in a short time. It leads to a reduction in time costs and 

also reduces human error. 

3) We presented a data processing method using the 

NGA-East database.  This procedure can be used to 

increase the reliability of ground motion data in the 

future. 

4) We proposed the direction for the scheme of the 

database. It was applied to the naming and database 

scheme of the Seisbench. We used flat file to include 

not only one-dimensional array information but also 

two-dimensional array information. This makes the 

database schema flexible so that it can store more data 

of different types that can be changed without major 

schema changes. 
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