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1. Introduction 

 
The seismic design and assessment of structural 

systems involves predicting the responses under a set of 

ground motions. Structural systems are, in general, 

designed to behave in nonlinear ranges, requiring 

nonlinear static or nonlinear dynamic analysis 

procedures for reliable estimation of structural 

responses. While the nonlinear dynamic analysis 

procedure produces the most accurate results by solving 

dynamic equilibrium equations at every time step, it 

requires significant computational effort. On the other 

hand, the nonlinear static analysis procedure relies on 

relatively simple equations, but due to the randomness 

in seismic excitation, this method often results in a 

significant level of uncertainty in prediction. Therefore, 

this study presents a novel method proposed by the 

authors that uses deep learning to predict seismic 

responses of structural systems exhibiting degradation 

and pinching effects. The numerical investigation 

shows that the proposed method is computationally 

efficient and provides accurate assessment for 

engineering practices [1]. 

 

2. Seismic demand database 

 

2.1 Modified Bouc-Wen-Baber-Noori model 

 

A seismic demand database is required to train the 

deep neural network (DNN) model. To generate seismic 

responses of various types of hysteretic behaviors, we 

propose a modified Bouc-Wen-Baber-Noori (m-

BWBN) model. This model introduces a parameter 

controlling the yield strength of the structure to a Bouc-

Wen class model developed by Baber and Noori [2]. 

Note that the Bouc-Wen-Baber-Noori (BWBN) model 

can describe stiffness and strength degradations, as well 

as pinching phenomena in hysteresis. A total of 14 

parameters are employed to describe the hysteretic 

behaviors by an m-BWBN model. 

The feasible parameter domain of the m-BWBN 

model is identified by examining the results of quasi-

static cyclic analysis of reinforced concrete (RC) 

columns [3]. The sensitivity analysis is also performed 

to figure out relatively insensitive parameters. By fixing 

the insensitive parameters to a representative value, we 

can significantly reduce the computational costs of 

constructing the seismic demand database. 

 

 

 

2.2 Development of the database 

 

A total of 129,600 different hysteretic behaviors are 

generated by discretizing the feasible domain of the m-

BWBN model parameters identified in the previous 

subsection. In the meantime, by introducing 1,499 

ground motions from NGA-West database [4], a total of 

194,270,400 (=129,600×1,499) time history analyses 

are carried out to construct the database. 

 

3. Deep neural network model 

 

3.1 Architecture of the deep neural network model 

 

Fig. 1 illustrates the architecture of the DNN model 

which is inspired by the authors’ previous work [5, 6]. 

The DNN model predicts the peak seismic responses of 

structures based on earthquake and structure 

information. The earthquake ground motion is 

characterized by three types of features, including 

earthquake characteristics, ground acceleration 

characteristics, and response spectrum. On the other 

hand, a convolutional neural network is employed to 

extract distinct features of the force and displacement 

relationship, which is commonly known as a hysteresis 

loop. The hysteresis loop is characterized by performing 

quasi-static cyclic analysis using a predefined 

displacement step. By introducing a hysteresis loop as 

an input of the DNN model, the model can consider the 

impact of complex hysteretic behaviors, such as 

stiffness and strength degradations, pinching effects, 

and smooth transitions from the elastic to inelastic 

range, which are challenging to characterize using a 

single scalar value. 

 

 
 

Fig. 1. Architecture of the DNN model. 
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3.2 Training methodologies and prediction accuracy 

 

A pretraining scheme that only uses a subset of the 

dataset is employed to accelerate the training 

convergence of the DNN model. Moreover, a natural 

logarithm is applied to the inputs and outputs to 

mitigate the skewness. The DNN model is trained using 

80% of the dataset, while the remaining 20% is used to 

check whether the model falls into a local minimum. 

Table 1 presents the mean squared error (MSE) and 

mean absolute error (MAE) for both the train and test 

datasets. The results indicate that the DNN model does 

not overfit to the train dataset. 

 
Table 1. Prediction accuracy of the DNN model 

Dataset MSE MAE 

Train 0.0391 0.1406 

Test 0.0434 0.1497 

 

4. Numerical investigation 

 

We introduce three single-degree-of-freedom 

(SDOF) reinforced concrete (RC) columns exhibiting 

stiffness and strength degradations to demonstrate the 

applicability and effectiveness of the DNN model. We 

use the ‘Concrete02’ and ‘Steel02’ material commands 

in OpenSees [8] and vary the mass of the RC columns 

to obtain hysteresis loops with different normalized 

yield strength and stiffness, as shown in Fig. 2. 

 

 
 

Fig. 2. Hysteresis of the RC columns. 

 

Table 2 presents the MSE of the seismic responses 

obtained from the DNN model and those from the 

dynamic analysis in a log scale. 135 ground motions are 

introduced for the numerical investigation. To test the 

performance, the DNN model is compared with the 

coefficient method, which is a nonlinear static analysis 

procedure widely used in practice [7]. Results show that 

the DNN model outperforms the coefficient method for 

all three cases. However, the error increases as the 

hysteresis exhibits more significant degradation and 

pinching effects, despite the use of the m-BWBN model. 

To mitigate this issue, it is necessary to supplement the 

response showing significant nonlinearities by 

incorporating a ground motion scale factor. 

 
Table 2. Prediction error of the coefficient method and the 

DNN model 

Method 
RC-1 

T=0.115 

RC-2 

T=0.162 

RC-3 

T=0.257 

Coefficient method 0.277 0.476 0.856 

DNN model 0.068 0.172 0.257 

 

5. Conclusions 

 

This study developed a deep neural network (DNN) 

model to predict seismic responses of structures with 

complex hysteretic behavior. In this regard, three 

contributions have been made. First, a modified Bouc-

Wen-Baber-Noori (m-BWBN) model was proposed to 

generate various hysteretic behaviors. Second, a seismic 

demand database was constructed by performing a huge 

number of dynamic analyses using the m-BWBN model. 

Third, a new DNN architecture was proposed to 

consider the effect of the complex hysteretic 

characteristics on the peak seismic responses. The 

developed database, DNN model, and source codes are 

available for download at http://ERD2.snu.ac.kr. The 

proposed approach showed promising results and the 

DNN model outperformed the conventional coefficient 

method. 

Future study is planned to improve the prediction 

accuracy of the DNN model in the domain where the 

accuracy is currently insufficient. Moreover, we extend 

the approach to multi-degree-of-freedom systems. The 

proposed approaches have the potential to significantly 

improve the accuracy and efficiency of seismic 

response prediction, which can have important 

implications for structural design and earthquake 

engineering. 
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