Gap Material and Radial Geometry Modeling Dependency on a T/H Analysis in a Channel of CANDU6 Reactor

Intelligent Accident Mitigation Research Division at KAERI

Eunhyun Ryu and Jong Yub Jung

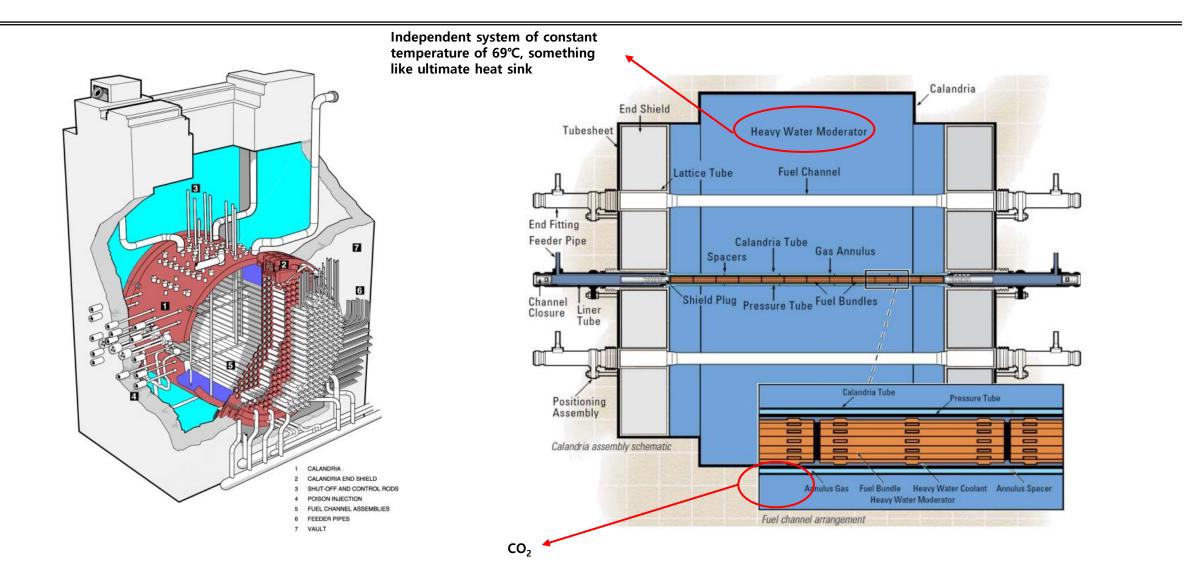
May 18, 2023

□ Introduction

□ **Problem Description**

- Geometry
- Boundary Condition & Initial Conditions
- Material Properties and Assumptions

□ Numerical Results


- Gap Material Dependency
- Modeling Dependency

□ Conclusions

□ **References**

CANDU6 Reactor Core and Channel Structure

Motivation of the Analysis

Quantitative Gap Material Dependency

- CUPID Material List
 - Helium, Hydrogen, Nitrogen, Krypton, Xenon, Air, Argon and SF6
- Real Annulus Gas System (AGS)
 - CO₂
 - Separate system
- Energy Transport without Main Fluid
 - Radial direction to moderator, Axial direction with AGS material

Quantitative Modeling Dependency

- Computational Effort
 - Omitting Pressure Tube, AGS and Calandria Tube is better
 - Using symmetry is better
- Reflecting Reality
 - Describing every details will be better
 - It is known that heat dissipation to moderator is about 4% on channel average
 - Experimental results indicates that there is no symmetry although it seems that results should have symmetry

Motivation of Single Channel Analysis

Conventional CCP Calculation

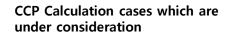
- CCP for All Channels
 - Conventional CCP calculations were done for every single channel of 380 channels
 - There is 3 mode which require Trip Set Point (TSP)
 - Each mode has several hundreds of calculation cases which have 380 CCP results individually

• CCP Tendency

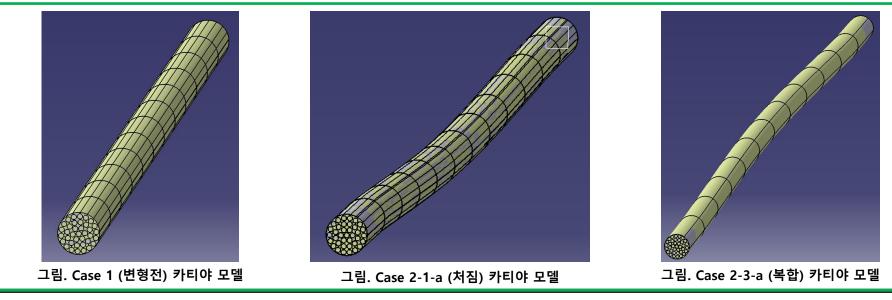
- In general, large value for channel with large power so that large flow rate is required
- In parallel, large power causes large pressure tube deformation, thus decrement from aging effect is large in magnitude in large power channel

Practical Limitation

- Modeling Difficulty
 - Modeling of all 380 channels is really large and cumbersome work (every channel has its own deformation value and status)
- Computational Difficulty
 - Even though we assume we can modeling all 380 channels despite of huge amount of works for modeling, calculation will not end in reasonable time

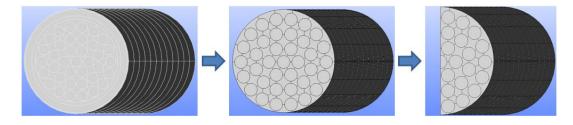


□ Geometry Modeling Set up


- Full
- Half with out PT, gap
- CT, Half with PT, gap, CT

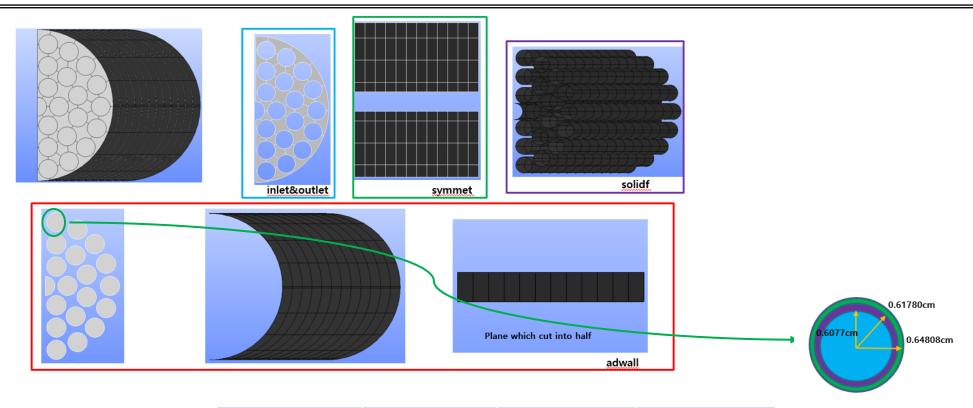
□ Validity of Usage of Other Non Condensible Gas (NCG)

- Necessity of gap modeling
 - Rather, gap modeling doesn't require after study



Geometry Changes and Some Specifications

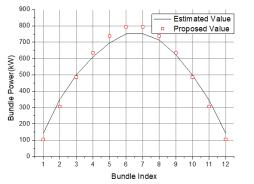
Geometries of Interest



□ Material and Temperature in the Simulation and Real Channel

Region Boundary	Specification (cm)	Reference/CUPID Material	Reference/CUPID Initial Temp. (K)
Fuel Radius	0.64808	UO ₂ , He, Zr4/ UO ₂ +He+Zr4 Volume Weighted	960.15/535.61
Pressure Tube Inside Radi us	5.1689	D ₂ O(99% purity)/D ₂ O only	561.15/535.61
Pressure Tube Outside Ra dius	5.6032	Zr-Nb/Stainless Steel	561.15/342.15
Calandria Tube Inside Rad ius	6.4478	CO ₂ /Air	451.65/451.65
Calandria Tube Outside R adius	6.5875	Zr-2/Stainless Steel	342.15/342.15
Bundle Length	49.53	N/A	N/A
Number of Bundles	12	N/A	N/A

Boundary Conditions and Initial Conditions



	Initial Value	Inlet Condition	Outlet Condition
Pressure (Pa)	1	10.0E6	
Liquid Temperature (K)	5	N/A	
Void Fraction		N/A	
NCG Quality		0.0	
Velocity (m/s)	8	N/A	

Integrated Fuel Region and Axial Power Shape

Thermal Conductivity after Volume Weighted Average						
Region Name		Pellet	Gap	Cladding	Merged Material	
Volume	Fraction	0.88	0.03	0.09	1.00	
Ma	terial	UO ₂	He	Zr	UO ₂ +He+Zr	
	erature (K)	Thermal Conductivity (w/mK)				
1	273.15	7.3		13.6	7.7	
2	373.15	7.3		14.1	7.7	
3	473.15	6.7	0.151	14.8	7.2	
4	573.15	5.8		15.8	6.6	
5	673.14	5.1		16.9	6.1	
6	773.15	4.6		18.1	5.7	
7	873.15	4.2		19.5	5.5	
8	973.15	3.8		21.1	5.3	
9	1073.15	3.5		22.8	5.2	
10	1173.15	3.3		24.6	5.1	
11	1273.15	3.1		26.8	5.2	
12	1373.15	2.9		29.2	5.2	
13	1473.15	2.8		31.7	5.3	
14	1573.15	2.6		34.4	5.5	
15	1673.15	2.5		37.3	5.6	
16	1773.15	2.5		40.4	5.9	

Bundle-wise power difference between proposed and estimated

value

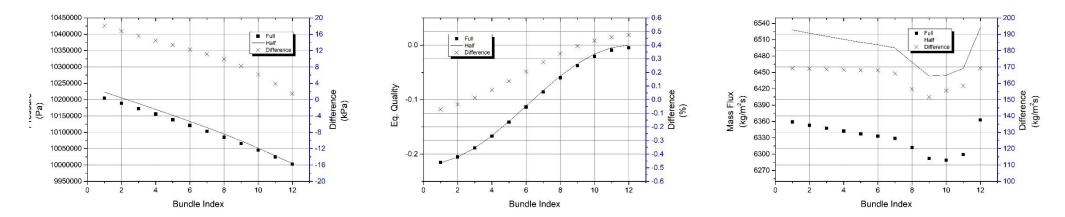
Heat Capacity after Volume Weighted Average						
Region Name		Pellet	Gap	Cladding	Merged Mat erial	
Volume	e Fraction	0.88	0.03	0.09	1.00	
Ma	iterial	UO ₂	He	Zr	UO ₂ +He+Zr	
	erature (K)	Heat Capacity (J/m³K)				
1	273.15	2.43E+06		1.88E+06	2.306E+06	
2	373.15	3.01E+06	927.3	2.08E+06	2.838E+06	
3	473.15	3.17E+06		2.21E+06	2.987E+06	
4	573.15	3.24E+06		2.29E+06	3.055E+06	
5	673.14	3.24E+06		2.38E+06	3.070E+06	
6	773.15	3.31E+06		2.38E+06	3.124E+06	
7	873.15	3.31E+06		3.63E+06	3.245E+06	
8	973.15	3.32E+06		4.46E+06	3.327E+06	
9	1073.15	3.33E+06		4.95E+06	3.379E+06	
10	1173.15	3.34E+06		5.12E+06	3.401E+06	
11	1273.15	3.34E+06		4.95E+06	3.393E+06	
12	1373.15	3.35E+06		4.46E+06	3.354E+06	
13	1473.15	3.35E+06		3.36E+06	3.256E+06	
14	1573.15	3.36E+06		2.38E+06	3.174E+06	
15	1673.15	4.12E+06		2.38E+06	3.841E+06	

Ring-wise Power Distribution inside of a Bundle at Average Exit

Burnup						
F 1	Number of	Elemen	t Power	Percent Power		
Element Ring	Elements	Nor. To Bu ndle Avg.	Nor. To Out er Element	Per Elemen t	Per Ring	
Outer	18	1.120	1.000	3.026	54.46	
Intermediat e	12	0.9254	0.8266	2.501	30.01	
Inner	6	0.8247	0.7367	2.229	13.37	
Center	1	0.7843	0.7006	2.120	2.120	

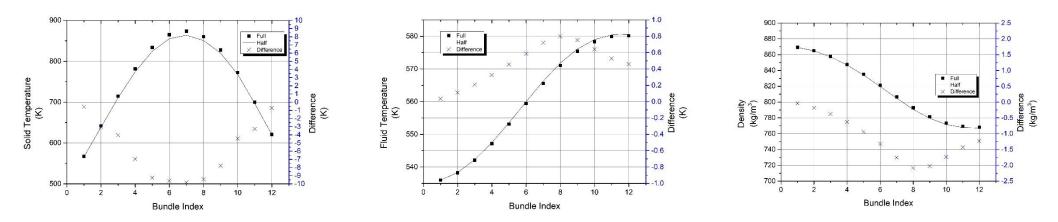
Gap Material Dependency

□ Tried Materials


Symbol (Atomic Number)	M. P. (°C)	B. P (°C)	Density (g/L)	k (w/mK)	C (j/molK)
He(2)	-272	-269	0.1786	0.1513	20.78
H(1)	-259	-253	0.0899	0.1805	28.84
N(7)	-210	-196	1.251	25.83	29.12
Kr(36)	-157	-153	3.749	0.0094	20.79
Xe(54)	-112	-108	5.984	0.0057	20.79
Air(N/A)	192	-194	1.225	0.025	29.07
Ar(18)	-189	-186	1.784	0.0177	20.79
SF6(N/A)	-78	-78	1.87	0.0166	51.07

□ Heat Transport Fraction for Materials

	Gap Mater ial	PHTS (%)	AGS (%)	MODER -ATOR (%)
1	Helium	93.4	0.2	6.4
2	Hydrogen	93.5	0.1	6.4
3	Nitrogen	93.1	1.4	5.5
4	Krypton	92.5	4.2	3.3
5	Xenon	92.1	6.6	1.3
6	Air	93.1	1.5	5.5
7	Argon	93.0	1.5	5.0
8	SF6	92.0	2.0	0.8


□ Parameters related with CHF

- CHF Determination
 - Referring 3-dimensional CHF table of mass flux, pressure and equilibrium quality
- Magnitude of Effect from Difference
 - Mass Flux > Pressure > Equilibrium Qualtiy
- Crucial for CHF Determination
 - The amount of difference can cause meaningful difference
 - It is better to depict all geometry as it is as possible

Modeling Dependency on General Parameters

□ Solid Temperature

• Less solid temperature is observed when half geometry is used

□ Fluid Temperature

• Because of reduced heat transport without main fluid, fluid temperature will rise

□ **Density**

• Natural result onsidering fluid temperature

Conclusions

□ Summary

• Heat Transport Ratios depend on material ranges,

- Primary fluid, **92%~93.4%**
- Gas axial transport, 0.1%~6.6%
- Radial transport, 0.8~6.4%
- Summation of Heat Transport except for primary flux, 6.6%~8.0%

• Effects of Modeling Dependency

- Meaningful changes for CHF parameters
- Negligible changes for the other prameters

Future Works

- Modeling Reflection
 - Because of effects on CHF, it is recommended to include every geometrical details when channel analysis, specially for CCP calculation
- Gap Material Consideration
 - The amount of heat transport by main fluid is not change much depending on gap material species
 - Any gas can be used currently

- J. J. Jeong, H. Y. Yoon, I. K. Park and H. K. Cho, The CUPID Code Development and Assessment Strategy, NET, Vol.42, Issue 6, pp. 635-655, 2010.
- □ H. Y. Yoon et al., CUPID CODE MANUAL VOLUME II: User's Manual, KAERI/TR-4404, 2011.

