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1. Introduction 

 
The supercritical CO2 (sCO2) system is a power 

conversion system that utilizes CO2 at the supercritical 
phase as a working fluid. As sCO2 is compressed near the 
critical point, the pressure can be increased effectively 
with little work input. This allows an sCO2 system to 
have smaller turbomachinery and higher efficiency than 
conventional steam Rankine or air Bryton cycles [1].  
This small size with high-efficiency characteristics 
makes the sCO2 system attractive for use as a power 
conversion system for a distributed power source [2].  

The distributed power source is a concept of small and 
medium-sized power generation systems placed nearby 
consumers of electricity to increase system stability, 
lower initial expenditures, and cut down on the number 
of transmission infrastructures. To meet local energy 
needs, distributed power sources must generate sufficient 
electricity to fulfill the local needs. This load-following 
generation scheme can be accomplished by known 
control strategies, such as turbine and core bypass 
controls, inventory tank control, and compressor 
recirculation control. Problems with these control 
methods are that the conditions at the turbine outlet affect 
the compressor inlet depending on the precooler 
operating conditions. 

In the case of a steam Rankine cycle, steam at the 
turbine outlet is cooled with a sufficient amount of water, 
and in an air Brayton cycle, outside air is injected, so the 
condition of the compressor inlet is unconnected with the 
physical condition of the turbine outlet. However, in an 
sCO2 Brayton cycle, a precooler must remove an 
appropriate amount of heat to stabilize the compressor 
inlet condition.  

A sCO2’s thermodynamic property that affects 
compression, such as compressibility factor and density, 
varies dramatically near the critical point. Meanwhile, 
the compressor inlet condition of an sCO2 Brayton cycle 
is close to the critical point. Therefore, the compressor 
inlet conditions must be controlled to maintain 
compressor efficiency and stability [3]. Since this is 
primarily a matter of how much heat is removed by a 
precooler at the turbine outlet, it can be achieved by 
controlling the coolant flowrate to the precooler. 

LQR is an abbreviation of Linear Quadratic Regulator 
and is a control method that minimizes the cost function 
for a given system. A regulator is designed to minimize 
the cost by representing the dynamics of the system 
linearly through the state space of the plant and 
expressing the cost as a quadratic equation. The control 
variables of this controller are calculated mathematically 
with the Riccati equation, which optimizes the cost 

function for arbitrary weights [4]. The reason why LQR 
control was chosen in this study is because of several 
advantages. First of all, the system controlled by LQR 
controller is always stable. In addition, unlike PID 
controller, when designing LQR controller, the number 
of variables to be tuned is reduced to one, which enables 
to design a more consistent controller. Finally, an 
optimal controller that does not require additional tuning 
is obtained by simply solving the LQ optimal control 
problem for arbitrary weights.  

In this study, a precooler system is modeled using 
MARS-KS code and verified using experimental data 
obtained from the Autonomous Brayton Cycle test loop 
(ABC test loop) compressor surge control test conducted 
at KAIST [5]. The system identification of the precooler 
system was conducted using a step input signal to obtain 
a system transfer function. The linear quadratic regulator 
(LQR) based controller is designed from the obtained 
system transfer function and using state space.  The 
designed LQR controller was implemented using 
MARS-KS code and evaluated by changing the 
precooler sCO2 inlet condition.  

 
2. Methods and Results 

 
This section describes the design procedure and 

simulation results of LQR controllers. The following 
design procedure includes system modeling, system 
identification, controller design, and implementing the 
LQR controller using MARS-KS. 

 
2.1 System Modeling Using MARS-KS 

 
The ABC test loop was designed for the integrated 

experiment of a simple recuperated sCO2 cycle. Baek 
modeled the entire ABC test loop using the MARS code 
and then verified it using the data of the compressor 
surge control test [5]. In this study, it is sufficient to have 
only the model of the precooler part among the entire 
ABC test loop system. To reduce calculation time, the 
precooler system of the ABC test loop was modeled 
using a node structure shown in Fig. 1, and the results are 
verified with the experimental data. The result is shown 
in Fig. 2.  

 

 
Fig. 1 Node structure of precooler system 
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Fig. 2 Precooler CO2 outlet enthalpy comparison of ABC test 
loop experiment result and MARS-KS code result 
 
2.2 System Identification 
 

At the design point, CO2 enters the precooler at 
321.74K, 8.6MPa, and exits at 308.15K, 7.6MPa. Also, 
throughout the experiment, the intake water conditions 
were preserved at 298.15 K and 1 bar. The response of 
the system was simulated using the MARS code when 
the water flowrate was doubled while CO2 side inlet 
condition was fixed to the on-design settings to 
determine the transfer function of a precooler system.  

The process variable of the precooler system is CO2 
outlet enthalpy, while a control input is water flowrate. 
The original input and the output signal, u0(k) and y0(k) 
respectively, were normalized using Equation (1) to 
make the input signal u(k) a unit step input and the output 
signal y(k) to start at zero. 

𝑢𝑢(𝑘𝑘) =
𝑢𝑢0(𝑘𝑘)
𝑢𝑢0,𝑚𝑚𝑚𝑚𝑚𝑚

− 1 

𝑦𝑦(𝑘𝑘) = 1 −
𝑦𝑦0(𝑘𝑘)
𝑦𝑦0,𝑚𝑚𝑚𝑚𝑚𝑚

 ⋯  (1)  

Normalized system I/O data was measured via MARS 
code as shown in Fig. 3. 

 
Fig. 3 System response for a unit step input 
 
Using the least square method on data shown in Fig. 3, 

the transfer function 𝐺𝐺�(𝑧𝑧) is approximated as shown in 
Equation (2). 

 

𝒵𝒵{𝑦𝑦(𝑘𝑘)}
𝒵𝒵{𝑢𝑢(𝑘𝑘)}

=
𝑌𝑌(𝑧𝑧)
𝑈𝑈(𝑧𝑧)

= 𝐺𝐺�(𝑧𝑧)

=
0.02004 𝑧𝑧 +  0.001064

 𝑧𝑧2 +  0.3433 𝑧𝑧 −  0.05896
 ⋯  (2) 

 

 
Fig. 4 System response comparison for a unit step input 
 
 Fig.4 shows system responses between the transfer 

function and the MARS simulation for a unit step input. 
It shows that it is possible to approximate the precooler 
system with the transfer function 𝐺𝐺�(𝑧𝑧).  

For the off-design condition, where the inlet CO2 
condition differs from the design point, the transfer 
function 𝐺𝐺�(𝑧𝑧) obtained from the design point needs to be 
modified. The response of the system of off-design 
points calculated from MARS simulation and transfer 
function 𝐺𝐺�(𝑧𝑧) without modification is shown in Fig. 5. 

 

 
 
Fig. 5. Off-design performance approximation 

 
The transfer function and MARS code show similar 

trends but amplitudes are different. Thus, transfer 
function 𝐺𝐺�(𝑧𝑧)  can approximate plant dynamics at the 
off-design condition by multiplying an appropriate scale 
parameter 𝐶𝐶𝑓𝑓 as shown in Equation (3).  

 

𝐺𝐺�(𝑧𝑧) = 𝐶𝐶𝑓𝑓
0.02004 𝑧𝑧 +  0.001064

 𝑧𝑧2 +  0.3433 𝑧𝑧 −  0.05896
 ⋯  (3) 

 
Fig.6 shows the response of transfer function 𝐺𝐺�(𝑧𝑧) 

with scale parameter 𝐶𝐶𝑓𝑓. 
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Fig. 6. Off-design performance approximation with scale 
parameter (𝐶𝐶𝑓𝑓 = 1.283) 
 
2.3 Linear Quadratic Regulator Design 

 
To design an LQR controller, the transfer function 

needs to be converted for state space. The state space 
realization of transfer function 𝐺𝐺�(𝑧𝑧)  is shown in 
Equation (4), using the observable canonical form. 

 

�𝒙𝒙
(𝑘𝑘 + 1) = 𝑨𝑨𝒙𝒙(𝑘𝑘) + 𝑩𝑩𝑩𝑩(𝑘𝑘)
𝑦𝑦(𝑘𝑘) = 𝑪𝑪𝒙𝒙(𝑘𝑘) + 𝐷𝐷𝑢𝑢(𝑘𝑘)  ⋯ (4) 

where, 

⎩
⎪
⎨

⎪
⎧𝑨𝑨 = �−0.3433 1

0.05896 0�

𝑩𝑩 = � 0.02004
0.001064� 𝐶𝐶𝑓𝑓

𝑪𝑪 = [1 0]
𝐷𝐷 = 0

 

 
It is well known that a full-state feedback controller 

gain that minimizes the cost function can be calculated 
by solving LQR equations. However, the state space of 
Equation (4) is just a model obtained from the simulated 
data. Thus, since Equation (4) does not represent the 
whole dynamics of an actual precooler, the controller 
gain calculated from Equation (4) cannot be directly 
utilized for controlling the whole system. Therefore, the 
LQR controller needs to operate for a given precooler by 
adding a discrete-time full-state observer as shown in Fig. 
7. 

 

 
 
Fig. 7. LQR controller with full-state observer 
 

For the state space equation in Equation (4), the full-
state observer gains matrix L, setting the observer’s 
eigenvalue as [0, 0] satisfied Equation (5) [6]. 

 
det[A − LC] = 0 ⋯ (5) 

𝑳𝑳 = �−0.3433
0.05896� 

 
The optimal LQR controller gains K that minimizes 

the performance index can be calculated by solving the 
following Equation (6), which is known as the discrete-
time algebraic Riccati equation (DARE) [7]. The R is an 
arbitrary positive definite matrix. 

 
𝐊𝐊 = [𝑹𝑹 + 𝐁𝐁𝑻𝑻𝑷𝑷𝐁𝐁]−1𝐁𝐁𝑻𝑻𝑷𝑷𝐀𝐀 
𝑷𝑷 = 𝐀𝐀𝐓𝐓𝑷𝑷𝐀𝐀 + 𝐐𝐐 − 𝑨𝑨𝐓𝐓𝑷𝑷𝐁𝐁[𝑹𝑹 + 𝐁𝐁𝑻𝑻𝑷𝑷𝐁𝐁]−1𝐁𝐁𝑻𝑻𝑷𝑷𝐀𝐀⋯ (6) 
 
With Equation (4) and Equation (6), if the value of 𝐁𝐁 

at the design point is called 𝐁𝐁𝟎𝟎  and the value of the 
controller gain 𝐊𝐊  is called 𝐊𝐊𝟎𝟎 , then the relationship 
shown in Equation (7) holds for an off-design point with 
arbitrary 𝐶𝐶𝑓𝑓 in the case of 𝐑𝐑 = 𝟎𝟎. 

 
𝐁𝐁 = 𝐶𝐶𝑓𝑓𝐁𝐁𝟎𝟎 = 𝐶𝐶𝑓𝑓 �

0.02004
0.001064� 

𝐊𝐊 = [𝑹𝑹 + 𝐁𝐁𝑻𝑻𝑷𝑷𝐁𝐁]−1𝐁𝐁𝑻𝑻𝑷𝑷𝐀𝐀 = �𝐶𝐶𝑓𝑓2𝐁𝐁𝑻𝑻𝑷𝑷𝐁𝐁�
−1𝐶𝐶𝑓𝑓𝐁𝐁𝑻𝑻𝑷𝑷𝐀𝐀

= 𝐶𝐶𝑓𝑓−1[𝐁𝐁𝑻𝑻𝑷𝑷𝐁𝐁]−1𝐁𝐁𝑻𝑻𝑷𝑷𝐀𝐀 = 𝐶𝐶𝑓𝑓−1𝐊𝐊𝟎𝟎
= 𝐶𝐶𝑓𝑓−1[−17.128 49.899]⋯ (7) 

By using the observer gain matrix L from Equation (5), 
the LQR control gains K from Equations (6) and (7), and 
the state space equation shown in Equation (4), the 
observed state 𝐱𝐱� of Fig.5 with the full-state observer is 
calculated as shown in Equation (8). 

 
𝒙𝒙�(𝑘𝑘 + 1) = (𝑨𝑨 − 𝑳𝑳𝑪𝑪 − 𝑩𝑩𝑩𝑩)𝒙𝒙�(𝑘𝑘) − 𝑳𝑳𝑒𝑒(𝑘𝑘) 
= �𝑨𝑨 − 𝑳𝑳𝑪𝑪 − 𝐶𝐶𝑓𝑓𝐁𝐁𝟎𝟎𝐶𝐶𝑓𝑓−1𝐊𝐊𝟎𝟎�𝒙𝒙�(𝑘𝑘) − 𝑳𝑳𝑒𝑒(𝑘𝑘) 
= (𝑨𝑨 − 𝑳𝑳𝑪𝑪 − 𝐁𝐁𝟎𝟎𝐊𝐊𝟎𝟎)𝒙𝒙�(𝑘𝑘) − 𝑳𝑳𝑒𝑒(𝑘𝑘) 
= � 0.3433 0

0.01822 −0.05309� 𝒙𝒙�
(𝑘𝑘) − �−0.3433

0.05896� 𝑒𝑒
(𝑘𝑘)  (8) 

 
The full state feedback controller gains K and the 

observed state 𝐱𝐱�  is calculated from Equation (3) to 
Equation (8). With the obtained K and 𝐱𝐱�, the normalized 
control input u is calculated as u = −𝐊𝐊𝐱𝐱� = −𝐶𝐶𝑓𝑓−1𝐊𝐊𝟎𝟎𝐱𝐱�. 
As 𝐊𝐊𝟎𝟎 is known value and the state 𝐱𝐱� is obtained from 
MARS code calculation and using Equation (8), the scale 
factor 𝐶𝐶𝑓𝑓 is the only term that needs to be pre-calculated 
before the control. The actual input of water flow to the 
precooler system is calculated by taking the normalized 
control input which is the inverse of Equation (1). 

 
2.4 Simulating LQR Controller Using MARS-KS 
 

A test scenario was selected to implement the LQR 
controller in the MARS code and evaluate its 
performance. The CO2 temperature was changed from 
the design point of 321.74K to 331.74K while the 
pressure and flowrate of CO2 at the inlet of precooler 
were kept constant at the design point. Three types of 
change in enthalpy were tested: ramp increase, step 
increase, and ramp decrease. The control goal of the LQR 
controller is to adjust water flowrate entering the 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 18-19, 2023 

 
 
precooler to match the enthalpy of CO2 exiting the 
precooler to the design point. 

Equation (8) and scale factor 𝐶𝐶𝑓𝑓 are the functions that 
need to be implemented in the MARS code. For Equation 
(8), matrix multiplication is needed. Although matrix 
calculation is not supported in the MARS code, if only 
the matrix multiplication of Equation (8) is solved in 
advance, the rest can be calculated for each step using a 
control card of the MARS code. To calculate the scale 
factor 𝐶𝐶𝑓𝑓 , 𝐶𝐶𝑓𝑓  was calculated for three points: 321.74K, 
326.74K, and 331.74K. Polynomial interpolation of 𝐶𝐶𝑓𝑓 at 
these three points predicted 𝐶𝐶𝑓𝑓  with respect to inlet 
enthalpy in the entire range of scenarios. 

Figure 8 shows the inlet enthalpy and the outlet 
enthalpy of precooler system to which the LQR 
controller was applied and simulated with MARS. As a 
result of controlling the enthalpy of the precooler CO2 
outlet by adjusting water flowrate to the precooler with 
LQR controller, it was confirmed that the control was 
possible in a scenario with a wide range and various 
types of input enthalpy change rates. As shown in Fig. 8, 
when the input was changed, the maximum error in the 
entire simulation was only 0.21%. 

 

 
Fig. 8. CO2 inlet enthalpy and outlet enthalpy of LQR-
controlled precooler system 

 
3. Conclusions 

 
In this study, an LQR controller for the sCO2 Brayton 

cycle precooler system was designed using data obtained 
from the ABC test loop. First, the MARS code was 
verified with experimental data, and the response of 
system to unit step input was simulated to obtain the 
transfer function. It was shown that this transfer function 
well predicted the open-loop response of precooler 
system under design conditions. In addition, it was 
shown that even when the precooler system is operating 
in off-design conditions, it can still be used by simply 
multiplying the transfer function obtained for the design 
condition with an appropriate scalar value. From this 
result, the LQR controller was designed to be used for 
the control of an entire range, not only for the design 
condition. Lastly, the LQR controller designed in the 
MARS code was implemented. By applying this to the 
sCO2 precooler system and performing computational 
analysis with the MARS code, it was shown that the 

designed controller controlled well with an error of less 
than 0.2%. 

This study suggests that state space-based controller 
design and simulation are possible using the MARS code 
for sCO2 system. Further research works can be 
identified from the result. First of all, it is possible to 
design and simulate other state space-based controllers 
with MARS code as well as with LQR controller. Next, 
it is necessary to study whether the controller designed 
from the MARS code operates as expected in real 
operation. If the controller designed from the MARS 
code works well in real condition, using system analysis 
code to develop a controller can become more widely 
accepted methodology.  
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