

Development of Bonner Sphere Spectrometer for Neutron Source with 30 MeV Proton Cyclotron

Gyuhaeng Jo^a, Soobin Lim^a, Bong-Ki Jung^b, Kyoung-Jae Chung^{a*} ^aDepartment of Nuclear Engineering, Seoul National University, 1, Kwanak-ro, Kwanak-gu, Seoul, Republic of Korea ^bKAERI, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea *Corresponding author: jkjlsh1@snu.ac.kr

Department of ICIFAR ENGINEERING

Introduction

At Advanced Radiation Technology Institutes (ARTI), Jeongeup

- ➔ Accelerator-based neutron source in development
 - Neutron generation by TMRS (target-moderator-reflector-shield) at RFT-30 cyclotron (30 MeV proton cyclotron) [1]
 - Target : Generating neutrons
 - Moderator : Cooling down neutrons
 - Reflector : Reducing neutron loss by collision
 - Shield : Removing unintended radiations
 - Neutron spectrum acquisition by BSS and spectrum unfolding [2,3]
 - BSS (Bonner sphere spectrometer) : Set of neutron detectors with different moderation medium such as HDPE (high density polyethylene)

✤ In this paper are included : Monte Carlo simulation result by MCNP 6.2 [4] → Neutron spectrum prediction for TMRS ²⁵²₉₈Cf-emitted neutron measurement Optimization and characteristics confirmation of BSS **※** For (x, y) = (0.35, 2) • 30 MeV Proton on Be

30 MeV

Experiment setup

- Used spheres : 0 & 3 in.
- 150 mm away from encapsulated 90 μ Ci $^{252}_{98}$ Cf for 300 s
- Recorded by a 250 MHz digitizer, DT5725 from CAEN

Solution State State Discrimination to distinguish neutron and gamma pulse

- Q_{total}: V-t integral from pulse rise to signal tail (Long Gate)
- Q_{tail}: V-t integral from signal head (Short Gate) to signal tail → PSD Ratio : ^Qtail Qtotal
- Maximum FOM (Figure of Merit) if BSS is optimized
 - FOM : (Distance between two peaks)
 (Sum of full width half maximum of two peaks)
 - Maximized when long gate is 56 ns

Setup for TMRS measurement on plan

- Target : 5.5 mm Be
- BSS : Total 4 spheres → 0 (bare), 2, 3 & 5 in.

Results

• Measurement spots : $x \rightarrow 0.35$ (Limit), 2, 3 & 4 m

 $y \rightarrow 1, 2$ (Along the neutron beam line) & 3 m

Neutron Energy (MeV)

Neutron spectrum by TMRS simulation

- Fast (above 1 MeV) : No or negligible moderation
- Thermal (below 1 eV) : Fully thermalized by moderation
- Others : Not gone through full thermalization

Bonner Sphere Spectrometer Design

X Characteristics of BSS

- ***** BSS with diverse sphere sizes has characteristics to detect widely-ranging neutrons via elastic collision with hydrogen nuclei at HDPE.
 - **X** Gamma ray simulation results

X Spectrum Variation by Surrounding Wall

	0 in.	3 in.
MCNP6.2	26±2	2258±12
Experiment	330±18	2487±50

→ Discrepancies by excluding neutrons scattered from the surrounding during the simulation

Conclusions & Future Plan

4 mm X 4mm Cylindrical GS20	Quartz Light Guide	Energy (MeV)	Necessity of BSS due to wide neutron spectrum from the simulation	
		About 13 times greater counts than neutrons	Development of BSS & optimization through ²⁵² ₉₈ Cf-emitted neutron measuren	nent
BSS design			On plan : Measurements after completion of TMRS & implementation of neutron	
■ <i>ф</i> 4 n	nm × 4 mm 95 % ⁶ 3Li-enr	iched GS20	spectrum unfolding	
	 Advantages of GS 	20 : Fast decay constant (~ 18 ns)	Reference	
■ <i>φ</i> 4 n	nm × 40 mm quartz light	 suitable for high radiation environment & capability of neutron-gamma discrimination [5] guide coupled to PMT (photomultiplier tube) 	 [1] Y. B. Kong, M. G. Hur, E. J. Lee, J. H. Park, Y. D. Park, and S. D. Yang, Predictive ion source control using artificial neural network cyclotron, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Equipment, Vol.806, pp.55-60, 2016. [2] G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, New York, pp.555-556, 2010. 	t for RFT-30 Associated
Acknowle	edgments		[3] D. W. Freeman, D. R. Edwards, and A. E. Bolon, Genetic algorithms—a new technique for solving the neutron spectrum unfolding proble Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.425, 1999.	em, Nucleai pp.549-576
This research wa	as supported by Natior	nal R&D Program through the National Research	[4] T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. Cox,, and T. Zukaitis, Initial MCNP6 release overview, Nuclear technology, Vol.1 315, 2012.	180, pp.298
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2020M2D1A1064206).		the Ministry of Science, ICT & Future Planning	[5] Y. Song, J. Conner, X. Zhang, and J. P. Hayward, Monte Carlo simulation of a very high resolution thermal neutron detector compos scintillator microfibers. Applied Radiation and Isotopes. Vol. 108, pp. 100-107, 2016.	sed of glass
			[6] D. Cester, M. Lunardon, G. Nebbia, L. Stevanato, G. Viesti, S. Petrucci, and C. Tintori, Pulse shape discrimination with fast digitize Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.748, pp.33	ers, Nuclear 3-38, 2014.

KNS 2023 Spring Conference 2023. 05. 17 - 2023. 05. 19

Seoul

UNIVERSITY