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1. Introduction 
 

Operators have to recognize large and small 
abnormal problems occurring in nuclear power plants 
(NPPs) and take appropriate measures to prevent them 
from deteriorating the condition of NPPs. Since an NPP 
operates by the interrelationship of its constituent 
components, even if a problem that is not taken action 
does not immediately cause an accident in operation, it 
can bring about a result that leads to the shutdown of 
the reactor later. Therefore, an artificial intelligence 
model developed to support operator diagnosis task in 
abnormal situations must be able to perform detailed 
diagnosis even for complex events. However, most 
previous studies have been conducted with the goal of 
diagnosing simple abnormal events. In addition, there 
are physical limitations in conceiving and acquiring 
scenarios for all complex abnormal events for training 
of artificial intelligence models. 

In this study, we tried to propose a model for 
diagnosing complex abnormal events with only 
scenarios for single abnormal events. The proposed 
model applies a method of performing characteristic 
feature selection by using a machine learning in 
advance to diagnose each abnormal event even in 
complex events. The proposed approach enabled 
diagnosis of complex abnormal events with higher 
performance compared to the existing model. 

 
2. Methods 

 
In an NPP abnormal event, a problem usually occurs 

in a specific component or system, and the related 
parameters are affected. Therefore, it is important to 
select major parameters among thousands of parameters 
in order for the artificial intelligence model for 
abnormal event diagnosis to effectively learn NPP data. 
The method for feature selection is introduced below. 

 
2.1 Feature Selection Using Model 

 
As a method of feature selection, there is a method of 

deriving a feature set showing high performance in a 
machine learning model. Below, two machine learning 
models are introduced, and important features can be 
selected through the feature importance of these models. 

- Extremely randomized trees classifier (Extra 
trees classifier) 
Extra trees increase randomness by randomly 
splitting each candidate feature in the forest trees 
[1]. It is similar to the existing random forest 

trees classifier, but the splitting approach is 
different, and it can be ensemble many trees to 
increase the classification accuracy for the 
validation dataset. 

- LightGBM 
LightGBM is a tree-based learning algorithm 
using the gradient boosting framework [2]. Since 
this is an algorithm that uses leaf-wise expansion, 
it can reduce more loss compared to the tree 
model using the existing level-wise expansion. 

 
2.2 Selected Feature Number Using Model Training 
 

It is important to provide appropriate information to 
improve the performance of the model. Therefore, it is 
necessary to limit the amount of information given in 
the data. To this end, the number of features with high 
importance may be specified in advance, but a specific 
mathematical criterion such as average importance may 
be used. In addition, there is a method of selecting 
features for the moment when the model has the highest 
performance. Recursive feature elimination with cross 
validation (RFECV) removes an unimportant feature 
(feature with the lowest feature importance) one by one 
backward while repeating model training [3]. Next, by 
calculating the performance using cross validation, the 
number of features that can secure the highest 
performance is checked. 

 
3. Experimental Setup 

 
Even in complex events in NPPs, the model must be 

able to recognize individual events. Below, we 
introduce the data used for training and test of the 
model and approach of the model. 
 
3.1 Abnormal Event Dataset for Model Training 

 
For model learning, we acquired data using a general 

pressurized water reactor-based 3KEYMASTER 
simulator provided by Western Services Corporation [4]. 
To consider the relevance of the two events later, eight 
abnormal events were selected as follows. For a training 
dataset, 25 scenarios of various intensities were 
obtained for each abnormal event, for a total of 200 
scenarios. The intensity of the abnormal event is 
determined by values such as valve position, degree of 
leak, and size of tube rupture. Each scenario was 
sampled for 60 seconds for 797 parameters. 
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Table I: Abnormal Event Description for Dataset 

Label Abnormal event description 
CHRG Charging line break upstream of FT-121 
LTDN Letdown line leak inside containment 
CDS Loss of condenser vacuum 

POSRV 
Pilot operated safety relief valve (HV456A) 

leak  

CWS 
Circulating water tube leak in low-pressure 

condenser 

RCP 
Reactor coolant pump seal injection water 

loss by stucking of valve (HV8351A) 

PZR 
Pressurizer spray valve (PV455B) open by 

positioner failure 

CCW 
Component cooling water service loop 

header leak to aux atm 
 

3.2 Abnormal Event Dataset for Model Test 
 

The test dataset for single abnormal events was 
acquired with a total of 200 scenarios, 25 for each 
abnormal event with a different intensity from the 
training dataset. In order to confirm that the model can 
have high diagnostic accuracy for complex events, it is 
also necessary to use complex event scenarios that 
include low-intensity abnormal events. For example, a 
small degree of line leak will just result in a small 
parameter change, but the model should be able to 
detect it. To this end, as shown in the figure below, a 
complex event scenario was created considering the 
combination of abnormal events and the combination of 
intensities within the abnormal events. A complex event 
dataset for model test can consider a total of 28 
combinations of abnormal events by considering the 
simultaneous occurrence of two out of eight abnormal 
events. Complex event dataset was acquired with a total 
of 700 scenarios, 25 for each abnormal event 
combination. 
 

 

Fig. 1. Consideration of Complex Abnormal Event Scenario 

 
3.3 Proposed Algorithm 
 

We proposed a model for diagnosing the occurrence 
of each abnormal event in complex events as shown in 
the figure below. Obtain the feature importance in the 
machine learning model that can diagnose each 
abnormal event through the training dataset. Then, 

based on the importance of the acquired features, the 
main parameters for diagnosing the occurrence of each 
abnormal event are selected according to the given 
criteria such as mean Gini importance. Next, the 
training dataset is preprocessed through a set of key 
parameters for each abnormal event, and used to train a 
binary classification model that diagnoses whether the 
target event has occurred. sub models that perform 
binary classification output 1 when the target abnormal 
event is detected for a given evaluation scenario, and 0 
when the target abnormal event is not detected. The 
results of each sub model are voting on to derive the 
final diagnosis result. In this study, a convolutional 
neural network model with one layer was used as sub 
model structure, and the hyperparameters are as follows. 

- Filter number of convolution layer : 32 
- Kernel size of convolution layer : 3 
- Activation function of convolution layer : ReLU 
- Activation function of dense layer : softmax 
- Loss function : binary crossentropy 
- Optimizer : Adam [5] 
- 100 epochs using early stopping monitored 

validation loss with 10 patience 
 

 

Fig. 2 Proposed Approach for Complex Abnormal Events 

 
4. Results 

 
In this study, Extra trees classifier and LightGBM 

were used as machine learning models for feature 
selection. In addition, a method of selecting parameters 
when the feature importance is above mean Gini 
importance and a method of automatically selecting 
parameters through RFECV were used. As shown in the 
figure below, when less important features were 
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removed one by one, the final number of features was 
determined at the point where the cross-validation score 
was highest. The number of parameters finally selected 
is shown in the table below, and in the RFECV method, 
the number of key parameters for most abnormal events 
was derived as the highest model performance at the 
minimum setting step. 

 

 

Fig. 3. Cross Validation Score with RFECV for RCP label 

 

Table II: Selected Feature Number at Each Model 

Label 
Extra trees LightGBM 

Mean RFECV Mean RFECV 
CHRG 77 10 38 10 
LTDN 136 10 93 10 
CDS 93 10 48 10 

POSRV 212 10 45 10 
CWS 111 10 79 91 
RCP 186 10 49 10 
PZR 242 13 50 10 
CCW 103 504 88 11 
 
The table below shows the diagnostic accuracy of the 

test dataset for the models to which each method for 
feature selection is applied. As a result, the proposed 
approach showed approximately 99% diagnostic 
accuracy for single abnormal events. In addition, it 
showed more than 85% diagnostic accuracy even for 
complex abnormal events.  

 

Table III: Test Accuracy with Each Model 

Feature selection 
Abnormal event 
of test dataset 

Model type Selected type Single Complex 
Extra trees Mean 99.02 % 85.49 % 
Extra trees RFECV 99.31 % 94.92 % 
LightGBM Mean 99.28 % 86.69 % 
LightGBM RFECV 98.68 % 85.80 % 

 

In particular, the table above showed the highest 
accuracy of 94.92% for complex abnormal events when 
the feature selection method using the extra trees 
classifier as a machine learning model with RFECV 
was applied. The table below compares the results of 
the proposed model and the general CNN model to 
which our algorithm is not applied.  

 

Table IV: Performance Improvement from Based Model 

 
Based 

model (A) 
Proposed 
model (B) 

Improvement 
(B-A) 

Single 99.22 % 99.31 % 0.09 %p 
Complex 62.56 % 94.92 % 32.36 %p 
CHRG 65.42 % 95.67 % 30.25 %p 
LTDN 67.14 % 93.59 % 26.45%p 
CDS 65.89 % 96.01 % 30.12 %p 

POSRV 57.33 % 91.67 % 34.33 %p 
CWS 81.62 % 99.11 % 17.50 %p 
RCP 73.45 % 99.02 % 25.57 %p 
PZR 14.47 % 89.19 % 74.72 %p 
CCW 75.14 % 95.11 % 19.97 %p 
 
Compared to the existing model, the proposed 

approach not only maintained the accuracy for single 
abnormal events, but also improved the accuracy to 
32.36 % points for complex abnormal events. Among 
them, when the CHRG event and the PZR event 
occurred simultaneously, the existing model could not 
diagnose the PZR event at all. However, the proposed 
model detected both events with a diagnostic accuracy 
of 98.27%. In addition, the proposed model improved 
the accuracy by 91.07% points compared to the existing 
model when the RCP event and the PZR event occurred 
simultaneously. We confirmed that in the proposed 
approach, the extra trees classifier selected 7 out of 10 
key parameters for diagnosing PZR events as 
parameters for 'Pressurizer pressure' and 'Pressurizer 
level'. 

 
5. Conclusions 

 
An operator support system in diagnosing abnormal 

events in NPPs should be able to secure diagnostic 
performance for particularly complex events. In this 
study, two machine learning models were used to select 
features for detecting each abnormal event. In addition, 
each sub model trained only whether the target 
abnormal event occurs through selected parameters. 
When parameters were selected through RFECV using 
the extra-trees classifier as a machine learning model, it 
showed the highest composite event diagnosis 
performance at 94.92 %. In further studies, we have to 
conduct a comparison analysis and sensitivity analysis 
using other feature selection methods and classification 
models. In addition, it is required to verify by extending 
it to a larger number of abnormal events to apply the 
proposed approach to actual NPPs. 
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