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1. Introduction 
 

In the case of a major nuclear accident, actual accident 
cases are extremely rare and data is limited. In this paper, 
we use data from the Shin-Kori nuclear power plant 
previously published in a paper to estimate 11 
representative radionuclides as source terms. Various 
types of forward models, such as Gaussian puffs, can be 
used as atmospheric dispersion models, but we propose 
a source term estimation methodology based on the 
simplest yet powerful Gaussian plume model to reduce 
initial complexity [1]. 

 
Source term estimation is connected to solving an 

inverse problem, which requires the application of 
optimization methodology. Based on Bayesian inference, 
we have used Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), and Ensemble Kalman Inversion 
(EKI) to find the state that minimizes the cost function 
[2, 3, 4]. Among these models, EKI has been selected as 
the most suitable means of estimating the source term, 
comparing computational simplicity, accuracy, and cost.  

 
2. Methodology 

 
We focus on Inverse modeling, which uses Bayesian 

inference to estimate the location and concentration of 
the source term [5, 6, 7]. The probabilistic estimation of 
the highest point is equivalent to finding the point where 
the cost function   is minimized, which is defined as 
follows: 

 () =  ( − )( − )  +  ( − )( − )   (1) 
 
where   is the observation data,  and   are the 

state vector of the source term and the prior vector of the 
source term,   and    are the prior data error 
covariance, the observation data error covariance, 
respectively, and   denotes the forward operator 
mapping the state  to the observation  space, which is 
determined by the physics model.  

 
To find the value of source term that minimizes the 

cost function, one can directly calculate the matrix for the 
given equation, solving ∇() = 0.  

  =  + ( + )( − )  (2) 
 

We have selected the Gaussian plume model as the 
physics model and applied GA, PSO, and EKI 
methodologies to estimate the source term, and we will 
compare and analyze the performance of each result. 

 
2.1 Gaussian Plume model 

 
The Gaussian Plume model assumes a uniform 

meteorological field and normal distribution diffusion. 
The dispersion equation of the Gaussian Plume model is 
as follow [8]: 

 (, , ) =   −    ×  − ()  +  − ()    (3) 
 
where   denotes the concentration at a location 

separated by (, , ) from the source,  is the emission 
rate of the pollutant from the source,   and   are the 
wind speed and the effective height of the plume, 
respectively, and  and   are the dispersion 
coefficients in y and z directions. The dispersion 
coefficient sets the diffusion coefficient in the above 
equation by utilizing the Pasquill-Gifford coefficients. 
 
2.2 Genetic Algorithm 

 
The key elements of GA include chromosome 

representation, selection, crossover, mutation, and 
fitness function computation. The optimization 
performance can vary depending on the specific 
application of each element [9]. The main algorithm 
flowchart is shown in Table I and in this paper, binary 
chromosomes, tournament selection, one-point 
crossover, and bit flip mutation are applied, with the least 
square method used as the fitness function. 

 

Table I: GA Algorithm 

Main Flow 
(Input the data and initialization) 
Set population size and maximum number of iterations 
Generate initial population 
Compute fitness value for each chromosome 

 
While number of iterations is less than maximum 
iterations: 

Select pair of chromosomes based on fitness 
    Apply crossover 

Apply mutation 
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Replace old population with new population 
Increment iteration counter 
 

Return best solution 
 
 
2.3 Particle Swarm Optimization 

 
The fundamental principles of PSO can be explained 

using the following equation [10]: 
 ,() =  × ,() +  ×  ×  , − ,()  + ×  ×  , − ,()  (4) 
 ,() = ,() + ,()  (5) 
 
with  = 1,2, … ,  and  = 1, 2, … , , 
where  is the number of particles in the swarm,  is 

the number of components for the vector  and ,  is 
the number of iterations(generations), ,()  denotes the th component of the velocity of particle  at iteration  
(  ≤ ,() ≤  ),  is the inertia weight factor,  
and  are random numbers uniformly distributed in the 
range (0,1) , and   and   are the acceleration 
coefficients. Also, ,() denotes the th component of the 
position of particle   at iteration  , and    and   are the personal best position of particle  and the 
global best position of the swarm, respectively. 

 
The main algorithm flowchart of PSO is shown in 

Table II. We use typical numerical values for these 
coefficients, setting the minimum inertia weight factor to 
0.75 and the acceleration coefficients c1 and c2 to 1.2. 

 

Table II: PSO Algorithm 

Main Flow 
(Input the data and initialization) 
Set swarm size and number of dimensions for each 
particle 
Generate position and velocity randomly 
Evaluate fitness 
Set personal best and its fitness for each particle 
Set global best and its fitness 
Update personal best and global best if necessary for 
each particle 

 
While number of iterations is less than maximum 
iterations: 

Update velocity and position for each particle 
Update personal best and global best if necessary 
Increment iteration counter 

 
Return global best solution 
 
 
 

2.4 Ensemble Kalman Inversion 
 
With EKI, the complicated  operator in Equation (2) 

are simplified by replacing them with covariance 
operations as follow: 

 
The number of Ensemble  → ∞:  ≡  ∑ () −  () −    ≈      (6)  ≡  ∑ () −  () −    ≈    (7) 
 
with   ≡  ∑ () , 
where  is the number of iterations. 
 
Consequently, EKI simplifies the computation and 

solves the inverse problem by requiring only forward 
calculations. The main algorithm flowchart of EKI is 
shown in Table III [11]. We will use EKI to estimate the 
concentration of a Gaussian plume model through a 
forward model and Ensemble operations. 

 

Table III: EKI Algorithm 

Main Flow 
(Input the state and initialization) 
Set ensemble size and maximum number of iterations 
Calculate the initial mean and covariance 
 
While number of iterations is less than maximum 
iterations: 

(Predict the state) 
Select the ensemble randomly based on covariance 
Estimate the predicted state 
Recalculate the mean and covariance 
(Update the state) 
Transform the ensemble into observation space 
Recalculate the mean in observation space 
Get the Kalman gain 
Update the state 
Recalculate the mean and covariance 
Increment iteration counter 
 

Return the mean and covariance 
 
 

3. Nuclear Severe Accident Applications 
 

In the case of a severe accident, assuming the location 
of the occurrence is highly likely to be known from a 
macroscopic spatial perspective, we fix the source 
location and simulated multiple radionuclide 
occurrences while calculating the ability to estimate the 
source term with an increasing number of observation 
stations. And we expand the simulation up to a maximum 
of 11 radionuclides.  
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3.1 Source term Information 

 
Given the lack of detailed information on the actual 

source term for a severe nuclear accident in a nuclear 
power plant, we use the source term information derived 
from the PSA Level 2. We utilize information on 11 
representative radionuclides for three source term 
categories (STC-3) for the Shin-Kori nuclear power plant, 
as shown in Table IV [1]. Different isotopes can be 
distributed and included in each radionuclide group. 
However, in the current scope of research, it is limited to 
cover all radioactive isotopes, which total more than 60. 
Therefore, representative isotopes have been selected for 
each radionuclide group. Among the 11 radionuclides 
selected, excluding Mo-103 and Sb-129, most of the 
radionuclides were discussed in previous studies [12], 
[13]. In this study, to maintain the complexity of solution 
conditions, these two isotopes have been included 
without exclusion. 

Table IV: STC-3 (Shin-Kori, Loss of offsite power) 

Nuclide Half-life Radioactivity (Bq/s) 
Kr-88 2.84hr 1.90387731e+13 

Xe-133 5.2475d 7.19994213e+13 
I-131 8.0207d 1.04716435e+12 

Cs-137 30.1671yr 8.67141204e+10 
Te-132 3.204d 1.46342593e+12 
Sr-89 50.57d 3.02453704e+10 

Mo-103 65.94d 2.38444444e+11 
Ba-140 12.752d 1.13539352e+10 
La-140 1.6781d 3.26791667e+10 
Ce-144 284.91d 2.34791667e+10 
Sb-129 4.39d 4.00798611e+11 

 
3.2 Simulation Settings 

 
The simulation domain has been set to be 10km in the 

x-direction, 1km in the y-direction, and 100m in the z-
direction. Wind direction is assumed to be 1.5m/s in the 
x-direction, and Pasquill-Gifford coefficients are taken 
into account.  

 
4. Results and Discussion 

 
Performance evaluation of various optimization 

methodologies has been carried out based on the analysis 
of simulation results.  
 
4.1 Single Source and Multiple Radionuclides 

 
In order to investigate scenarios where multiple 

radionuclides can be released at a single source, we have 
conducted an analysis by increasing the number of 
radionuclides from one to eleven using the STC-3 
information, as mentioned above, and analyzed the 
estimation of the source term depending on the number 

of observation stations. Unlike Case1, the location of the 
source is fixed, considering that in a severe accident, the 
approximate location of the accident could be known 
from a macroscopic perspective of meteorology. 

 

 
 
Fig. 1. Solvable Condition Diagram: This graph summarizes 
the results of analyzing the solvability of solutions while 
increasing the number of radionuclides from one Kr-88 to 11, 
including Sb-129, and the number of observations from one to 
100. The solvability may vary depending on factors such as 
the half-life and concentration of each radionuclide, but this 
graph provides an overall trend for reference. 

 
As shown in Fig. 1, our simulation results indicate that 

up to a certain number of radionuclides, a complete 
estimation of the source term is possible, but beyond that 
number, even with an increasing number of observation 
stations, a complete estimation may be difficult, and 
partial estimates are only possible for radionuclides with 
high concentration or short half-life. Moreover, we found 
that more observation stations than the number of desired 
solutions may be needed, and that even with many 
observation stations, the search for solutions could be 
limited. The use of elimination techniques can improve 
partial estimation, but this approach also incurs errors 
that arise from the eliminated uncertainties, and it may 
be possible to achieve complete estimation for cases 
where partial estimation was previously done. 

 
Based on the Solvable Condition Diagram derived 

above, a significant change in finding the solution is 
observed when there are 5 radionuclides. We will mainly 
focus on the analysis of 5 radionuclides in the following 
analysis, when the number of receptors increases at a 
condition of STC-3. 

 
Differences in the specific performance of each 

method have been examined in more detail. First, 
regarding iteration(generation), the convergence speed 
of EKI has been found to be the fastest, followed by GA 
and PSO, as shown in Fig. 2. EKI required tens of 
iterations to converge to 1e-6, while GA required tens to 
hundreds of iterations, and PSO required hundreds to 
thousands of iterations. However, it should be noted that 
convergence speed of GA and PSO may be influenced by 
how the coefficients are set. While it is necessary to 
analyze in detail the convergence speed of GA and PSO 
as a function of changes in each coefficient, it is not 
within the scope of this paper. Based on the coefficients 
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commonly used in the literature, we have selected the 
coefficients for the GA and PSO simulations. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. (a) Convergence analysis graph of GA as a function of 
generation (iteration), (b) Convergence analysis graph of PSO 
as a function of generation (iteration), (c) Convergence analysis 
graph of EKI as a function of iteration: The graphs in (a) and 
(b) may appear somewhat discontinuous, but this is because 
there are cases where the global best does not change even after 
the iteration, and therefore it should be noted that the y-axis is 
in log scale. 

 

Next, regarding ensemble(population), as shown in 
Fig. 3, an increase in ensemble size has led to increased 
calculation stability. It also has resulted in a decrease in 
the number of iterations required. 

 
 

 
Fig. 3. (a) Changes in GA simulation results with increasing 
population size, (b) Changes in PSO simulation results with 
increasing population size, (c) Changes in EKI simulation 
results with increasing ensemble size: Overall, it can be seen 
that the stability of the calculations increases as the number of 
populations (ensembles) increases. 
 

Regarding accuracy, GA shows an error rate of 1e-2, PSO 
shows 1e-3, and EKI show 1e-5, as shown in Fig. 4. Therefore, 
it can be seen that the estimation accuracy is in the order of EKI, 
PSO, and GA.  
 

 
(a) 
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(b) 

 

 
(c) 

Fig. 4. (a) Error rate between estimated and true values using 
GA with identical initial boundary conditions, (b) Error rate 
between estimated and true values using PSO with identical 
initial boundary conditions, (c) Error rate between the 
estimated value using EKI and the true value, when the initial 
prior information is uniformly assigned to each radionuclide. 
 

Overall, considering the convergence speed, accuracy, 
and computation time, EKI has been found to perform 
better than GA or PSO. 
 
4.2 GPU Parallelization 

 
We have modified the EKI code that shows the overall 

best performance to enable GPU parallel computation 
using the Cupy package provided by Python for more 
convenient GPU utilization. As a result, we confirmed 
that GPU parallelization can reduce computation time for 
large-scale operations. In particular, as shown in Fig. 5, 
when we plotted the product of Ensemble and Iteration 
that satisfied a specific convergence condition (Residual 
of Cost function reaching 10e-6) against the 
corresponding computation time, we have found that 
GPU computation is faster for a certain number of 
Ensemble and Iteration or more, while CPU computation 
is faster for less than that number. This suggests that the 
order of computation time increase due to parallelization 
is significantly lower and a difference of tens to hundreds 
of times in computation speed can occur as the scale gets 
larger. 

 
 

 
 

Fig. 5. Comparison of EKI computation using CPU and GPU: 
Considering that EKI converges within 10 iterations, GPU 
computation speed exceeds CPU computation speed in the 
range of tens of thousands to hundreds of thousands and in 
large-scale computations, there can be a difference of tens to 
hundreds of times. 

 
5. Conclusions 

 
Our study shows that the probability of finding a 

solution increases when the number of receptor points is 
greater than the number of sources, although this is not 
always true under specific conditions. Additionally, 
estimation of source locations is easier for radionuclides 
with higher radioactivity or shorter half-life. 

These results can be used to inform the development 
of more accurate and efficient monitoring systems and to 
better understand the behavior of radioactive materials in 
the environment. 
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